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Abstract

In Deliverable 4.3 “Efficient charging structure” of the project PLATON, the planning process

of conversion of the conventional or mixed bus fleet to a 100% electric bus fleet is modeled

by the optimization problems Opt, DepOpt and OptSched, which take into account cost

and resource factors of the planning process. Solutions of these problems need efficient algo-

rithms and data structures. This Deliverable contains description of such algorithms and data

structures.

This deliverable is amended by the chapter 6 of an advanced and efficient model of the Total

Cost of Ownership (TCO). The developed TCO model is a socially-oriented, dynamic model

of TCO. By design, this model is to serve an ex-ante assessment of the costs of the planned

investment. The developed dynamic TCO model provides different ways of financing of the

investment, as well as its implementation in parts over various periods of time.
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1 Introduction

This report describes results of the project PLATON on the determination of efficient algorithms

and data structures for the problems Opt, DepOpt and OptSched which are formulated in

the previous Deliverable. As in the previous Deliverable, we call an electric bus as an e-bus.

Problem Opt is to determine a fleet of e-buses with fast-charging batteries, places for

charging stations and transformers, assignment of charging stations to the selected places,

assignment of charging stations to the transformers and assignment of charging stations to the

routes such that all e-buses can feasibly drive, the required traffic interval is maintained, and the

output power of any transformer is not exceeded. The objective is to maximize the total value

(positive ecological and social effect expressed quantitatively), provided that the total capital

cost and the total operating, depreciation and energy cost do not exceed their upper bounds. It

is assumed that Opt will be solved repeatedly for several successive planning periods (years).

Decisions made in the past periods will be used as a part of the input for the future period.

Problem DepOpt considers a given fleet of e-buses with slow-charging batteries and fixed

timetables, which charge at the same depot. The problem is to determine dynamic quantities

of the required electric power supplied to the depot by the city power grid, the type and the

number of charging stations of this type in the depot, types of e-bus batteries and charging times

of each e-bus while it is in the depot such that the total daily cost of the charging equipment

and the consumed energy is minimized, provided that the arrival and departure times of e-buses

to/from the depot, the dynamic upper bound on the supplied power and functions of charge

and discharge of the batteries are addressed.

Problem OptSched is to determine a route timetable such that the same average traffic

interval of all public vehicles of the same route is maintained and departures of public vehicles of

the same type assigned to the same route are distributed as smoothly as possible over departures

of all public vehicles in the most representative time period.

Solutions of the problems Opt, DepOpt and OptSched need efficient algorithms and data

structures, which are described in Sections 2, 3 and 4, respectively. Since the efficiency of a

data structure depends on the algorithm which employs this data structure, the algorithms are

described first followed by the description of the data structures. Section 5 contains concluding
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remarks.

2 Efficient algorithm and data structure for Opt

A solution of the problem Opt is denoted as X. Other notations used in this section can be

found in the previous Deliverable. Problem Opt is formulated as follows.

max
X

V (X), subject to

CC(X) ≤ ucc, (1)

OC(X) ≤ uoc, (2)

Zr(X) ≤ pasr + min
b∈Br(X)

{capb} − 1, r ∈ R(X), (3)

Zr(X) ≥ min
b∈V Cr

{capb}, r ∈ R(X), (4)

TPq(X) + ooq ≤ oq, q ∈ T (X), (5)

ATr(X) ≤ utr, r ∈ R(X), (6)

cjrb(X) ∈ Cp(j) ∩ Cb, j ∈ SRrb(X), r ∈ Rb(X), b ∈ B(X), (7)

eir(jrbk ,jrbk+1)b=1, jrbk ∈SRrb(Q), k=0, . . . , n(r, b)−1, eir(jrb
n(r,b)

,jrb1 )b=1, r∈Rb(X), b∈B(X), (8)

ncpc +NCpc(X) ≤ ucpc, p ∈ Sc(X), c ∈ C(X), (9)∑
c∈Cb

(ncp(j)c +NCp(j)c(X)) ≥ 1, j ∈ NMb, p(j) ∈ S(X), b ∈ B(X), (10)

ncpc +NCpc(X) ≥ BNpc(X), p ∈ S(X) ∪NO, c ∈ C, (11)

|Lp(X)| = m, p ∈ S(X)\NO. (12)

Constraints (1) and (2) bound the total capital cost and the total operating, depreciation

and energy cost from above. Constraints (3) limit the total passenger capacity of new e-buses

on each route r ∈ R(X) by the total capacity of conventional vehicles on this route plus

the capacity of the largest e-bus selected for this route. Constraints (4) state that the total

passenger capacity of new e-buses on each route r ∈ R(X) should be at least the minimal

capacity of a single conventional vehicle on this route. Constraints (5) ensure that the total

instant power demand of new and old charging stations linked to the same transformer does not

exceed the output power of this transformer. Constraints (6) specify upper bound on the length
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of the average traffic interval of all e-buses assigned to the same route. Constraints (7) ensure

that an appropriate charging station is opened at each node associated with the vertices from

the sequence SRrb(X). Constraints (8) guarantee that any new e-bus can feasibly run over the

route to which it is assigned if appropriate charging stations are opened at the nodes associated

with the vertices from the sequence SRrb(X). Constraints (9) limit the total number of old and

new charging stations of any type at any node from above. Constraints (10) state that at least

one old or new charging station of a type c ∈ Cb must be opened at a node associated with

the vertex from the set NMb if this vertex belongs to a route served by at least one new e-bus.

At least, depot is such a vertex. Constraints (11) guarantee that the number of old and new

charging stations of type c opened at node p is sufficient to serve e-buses of all types assigned

to this charging station type and node. Constraints (12) guarantee that the number of new

links of a non-transformer node, at which at least one new charging station is open and no old

charging station was open, with transformer nodes is equal to m.

In the next section, problem Opt is proved NP-hard in the strong sense for two important

special cases, which implies that the development of an algorithm with a reasonable running

time for this problem is highly unlikely. Development of such an algorithm would assume

solution of the “P versus NP” problem, which is among seven “Millennium Prize Problems” of

the Clay Mathematics Institute.

2.1 Computational complexity of Opt

In this section, we prove that Opt is NP-hard in the strong sense, which means that the devel-

opment of an algorithm which will be able to solve this problem to optimality in a reasonable

time is highly unlikely, and the development of heuristic (approximation) algorithms is justified.

Theorem 1 Problem Opt is NP-hard in the strong sense even if there is a single charging

station type, a single transformer with unlimited output power and eligible for linking with any

charging station location, and all costs are zero.

Proof: We will show that Opt is algorithmically equivalent to the NP-complete in the strong

sense problem 3-Partition, see Garey and Johnson [2].
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3-Partition: Given 3k+1 positive integer numbers h1, . . . , h3k and H satisfying
∑3k

i=1 hi =

kH and H/4 < hi < H/2, i = 1, . . . , 3k, does there exist a partition of the set {1, . . . , 3k} into

subsets X1, . . . , Xk such that
∑

i∈Xj
hi = H for j = 1, . . . , k?

Given an instance of 3-Partition, we construct an instance of the problem Opt, in which

there are 3k e-bus types with capb = 1, and 3k routes with pasr = 1 and vr(Z) = Z, b =

1, . . . , 3k, r = 1, . . . , 3k. Only e-bus type b is eligible for route b, b = 1, . . . , 3k. Upper bound

on the average length of the traffic interval of all e-buses on the same route are equal to 1 for all

routes. There is a single charging station type c. All routes go via the same stops j = 1, . . . , k,

at each of which at most ucjc = H charging stations can be opened. Any e-bus must be charged

at least once at one of the k stops and one such charging is sufficient to complete its route cycle.

The charging times are ctjbc = hb for j = 1, . . . , k, b = 1, . . . , 3k. We will show that there exists

a feasible solution X for this instance with value V (X) ≥ 3k if and only if the original instance

of 3-Partition has a solution.

“Only if”. Assume that there exists a feasible solution X of the constructed instance

of the problem Opt with value V (X) ≥ 3k. From V (X) ≤
∑3k

r=1 pasr = 3k, it follows

that there exists a solution, in which at least one e-bus of type r is assigned to each route r for

r = 1, . . . , 3k. Consider the set of routes Rj(X) whose e-buses charge at the stop j, j = 1, . . . , k.

Since ATEr(X) = ATr(X) ≤ 1, it follows from the definition of the function BNjc(X) that∑
r∈Rj(X) hr =

∑
r∈Rj(X) ctjrc ≤

∑
r∈Rj(X)

ctjrc
ATEr(X)

= BNjc(X) ≤ H is satisfied for j = 1, . . . , k.

Since
∑3k

i=1 hi = kH, the latter relations are satisfied only if
∑

r∈Rj(X) hr = H for r = 1, . . . , k.

Hence, sets Xj = Rj(X), j = 1, . . . , k, constitute a solution of 3-Partition.

“If”. Let X1, . . . , Xk be a solution of 3-Partition. Construct a solution X of Opt, in

which NVrb(X) = dr + hb e-buses of type b = r serve route r for r = 1, . . . , 3k, Rj(X) = Xj

and e-buses of types from Xj are charged at stop j and only at this stop, j = 1, . . . , k. For this

solution, V (X) = 3k, ATr(X) = dr+hb
NVrb(X)

= 1, and BNjc(X) = H, j = 1, . . . , k, as it is required

for part “if”.

Theorem 2 Problem Opt is NP-hard in the strong sense even if there is a single e-bus type,

a single route, and all costs are zero.

Proof: A reduction from the NP-complete problem 3-Partition formulated in the previous
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theorem is used. Given an instance of 3-Partition, we construct an instance of the problem

Opt, in which there is a single route r with pasr = 1, vr(Z) = Z and stops j = 1, . . . , 3k, a

single e-bus type b with capb = 1, which can serve r, and k transformers with output power

oi = H, i = 1, . . . , k, which can be linked with any of the 3k stops. At stop j, a single charging

station of type j can be opened such that Cjb = {j}, and poj = hj j = 1, . . . , 3k. Each charging

station must be linked with one transformer. Any e-bus must be charged at each of the 3k

stops in order to complete its route cycle. We will show that there exists a feasible solution X

for this instance with value V (X) ≥ 1 if and only if the original instance of 3-Partition has

a solution.

“Only if”. Assume that there exists a feasible solution X of the constructed instance of

the problem Opt with value V (X) ≥ 1. Then, there exists a solution, in which a single e-bus

of type b is assigned to route r. Consider the set of stops Mi(X) linked with transformer i,

i = 1, . . . , k. For feasibility, relations
∑

j∈Mi(X) hj ≤ H must be satisfied for i = 1, . . . , k.

Since
∑3k

j=1 hj = kH, the latter relations are satisfied only if
∑

j∈Mi(X) hj = H for i = 1, . . . , k.

Hence, sets Xi = Mi(X), i = 1, . . . , k, constitute a solution of 3-Partition.

“If”. Let X1, . . . , Xk be a solution of 3-Partition. Construct a solution X of Opt, in

which a single e-bus of type b serves route r, and Mi(X) = Xi, j = 1, . . . , k. For this solution,

V (X) = 1 and TPi(X) = H = oi, i = 1, . . . , k, as it is required for part “if”.

2.2 Randomized heuristic algorithm for Opt

It has been recognized by the Computer Science community that metaheuristic methods such

as Simulated Annealing, Tabu Search, Genetic Algorithm, Ant Colony Optimization, Particle

Swarm Optimization and other local search methods are the most appropriate procedures for

solving NP-hard problems. We have chosen Particle Swarm Optimization for the problem Opt,

because it works well for the problems with a complex solution structure such as the solution

structure of the problem Opt, it is easy for implementation because it operates with only three

parameters of the candidate solution called position, velocity and value, and it convergence rate

is often faster than that of the other metaheuristic methods (Sengupta et al. [6]).

Denote by X the set of feasible solutions of the problem Opt. By combining a randomized

choice of feasible or infeasible partial solutions with a Particle Swarm Optimization technique,

9



we construct a set of feasible complete solutions Q ∈ X , which we expect to contain solutions

close to the optimal solution. A formal description of our algorithm, denoted as RH, is given

below. A feasible solution, in which no new e-bus is selected, is denoted as Q0. Steps of the

algorithm are performed sequentially, unless it is stated differently. Algorithm employs proba-

bilities which are used to determine characteristics of a solution. These probabilities are control

parameters of the algorithm. They can be defined by the decision maker, or set to be the same

for all possible values of the same solution characteristic, in which case uniform distribution of

the values is assumed. Probabilities can also be adjusted in a computer experiment.

Algorithm RH.

Step 1. (Initialization) Set Q = {Q0}. In Steps 2-6, a partial solution Q is generated. It

can be extended to feasible or infeasible complete solution.

Step 2. (Generation of a set of routes R(Q) served by at least one new e-bus) Define

probability prr, 0 ≤ prr ≤ 1, of including r ∈ R into R(Q). Generate set R(Q) by using

these probabilities such that |R(Q)| ≥ 1. Define the set of vertices N(Q) = {j | j ∈

R(Q)}.

Step 3. (Generation of a set Br(Q) of e-bus types of new e-buses to serve route

r ∈ R(Q)) For each route r ∈ R(Q), define probability prrb of employing new e-buses

of e-bus type b of new e-buses on route r, b ∈ Br. Generate sets Br(Q), r ∈ R(Q),

by using these probabilities such that |Br(Q)| ≥ 1 for each r ∈ R(Q). Generate set

B(Q) = ∪r∈R(Q)Br(Q) and sets Rb(Q) of routes served by at least one e-bus of type

b ∈ B(Q).

Step 4. (Generation of locations for charging stations and determination of charg-

ing station types cjrb(Q) to charge old or new e-buses of type b assigned to

route r at node p(j)) Values cjrb(Q) are initiated as cjrb(Q) = False. Let SR(Q) = ∅.

For each e-bus type b ∈ B(Q) and each route r ∈ Rb(Q), include into SR(Q) “obliga-

tory” vertices of the set NMb ∩ r and vertices corresponding to nodes with old charging

stations c ∈ Cb assigned to b and r. It is assumed that charging station types Cp(j) ∩ Cb
are given or they are randomly generated for nodes associated with these “obligatory”
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vertices. For given route r and e-bus type b, the generation process starts by including

in Srb(Q) all vertices from SR(Q) which belong to πr. Include in SRrb(Q) vertex j0 ∈ πr
if it has not been included in SR(Q). If |SRrb(Q)| = 1 and eir(j0,j0)b = 1 then randomly

choose j from (j1, . . . , jr) and include j in SRrb(Q). If |SRrb(Q)| = 1 and there is vertex

jk from (j1, . . . , jr) such that eir(j0,jk)b = 0 then choose with certain probability vertex vl,

l = 1, . . . , k−1 and include vl in SRrb(Q). This probability can be higher for larger l. Let

SRrb(Q) = (jrb0 , . . . , j
rb
n(r,b)) and n(r, b) ≥ 1. If eir(jrbk ,jrbk+1)b = 1 for k = 0, . . . , n(r, b) − 1

and eir(jrb
n(r,b)

,jrb1 )b = 1 then stop generation process for current r and b. If eir(jrbk ,jrbk+1)b = 0

for some k = 0, . . . , n(r, b) − 1 then there is vertex jh in segment (r(jrbk , j
rb
k+1) of route

r such that eir(jrbk ,jh)b = 0. In this case choose with certain probability vertex vl from

πr between jrbk and jh−1 and include vl in SRrb(Q). This probability can be higher if

the distance from jrbk to jh (respectively, from jh to rb
k+1) is larger. If eir(jrb

n(r,b)
,jrb1 )b = 0

then there is vertex jh in segment (jrbn(r,b), jr) or in segment (jr, j
rb
1 ) of route r such that

eir(jrb
n(r,b)

,jh)b = 0. In this case choose with certain probability vertex vl from πr between

jrbn(r,b) and jr or between jr and jrb1 and include vl in SRrb(Q). Repeat this process while

eir(jrbk ,jrbk+1)b = 0 or eir(jrb
n(r,b)

,jrb1 )b = 0. For each included vertex j define with a certain

probability charging station type c∗ = cjrb(Q) ∈ Cb ∪ Cp(j for node associated with j.

Note that feasibility of such a process can be checked at the stage of data input.

Generate sets S(Q), Sc(Q), C(Q) and Bpc(Q), which are analogs of the same concepts

defined for a feasible solution X. Note that the following relations are guaranteed to be

satisfied at the end of this stage:

cjrb(Q) ∈ Cp(j) ∩ Cb, j ∈ SRrb(Q), r ∈ Rb(Q), b ∈ B(Q),

eir(jrbk ,jrbk+1)b = 1, jrbk ∈ SRrb(Q), k = 0, . . . , n(r, b)− 1, r ∈ Rb(Q), b ∈ B(Q),∑
c∈Cb

(ncp(j)c +NCp(j)c(Q)) ≥ 1, j ∈ NMb, p(j) ∈ S(Q), b ∈ B(Q),

which are analogs of the constraints (7), (8) and (10). Note that NCp(j)c(Q) in the last

relation is not determined explicitly, but the relation is satisfied by the definition of Step 4.

Step 5. (Determination of new edges linking locations of charging stations with

transformers, numbers NCpc(Q) of new charging stations and numbers NVrb(Q)
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of new e-buses) For each node p ∈ S(Q)\NO, denote the set of transformer nodes

connected to node p according to the partial solution Q as Lp(Q). Denote by Mq(Q) =

{p ∈ S(Q) | q ∈ Lp(Q)} the set of new non-transformer nodes linked with transformer

node q.

Sets Lp(Q), p ∈ S(Q)\NO, sets Mq(Q), q ∈ T , set T (Q) of new transformers, numbers

NCpc(Q) of new charging stations and numbers NVrb(Q) of new e-buses are determined

as a solution of the following problem.

maxV (Q), (13)

subject to Q ∈ D, where

V (Q) =
∑

r∈R(Q)

vr(Zr(Q)),

CC(Q)=
∑

p∈S(Q)\NO

∑
q∈Lp(Q)

clqp+
∑

q∈T (Q)\TO

cbq+
∑
c∈C(Q)

∑
p∈Sc(Q)

cccapc NCpc(Q)+
∑
r∈R(Q)

∑
b∈Br(Q)

cvcapb NVrb(Q),

OC(Q) =
∑

c∈C(Q)

∑
p∈Sc(Q)

ccopec NCpc(Q) +
∑

r∈R(Q)

∑
b∈Br(Q)

cvoperb NVrb(Q),

Zr(Q) =
∑

b∈Br(Q)

capbNVrb(Q),

BNpc(Q) =
⌈⌈ ∑

r∈Rp(Q)

∑
b∈Bpc(Q)

ctpbc
ATEr(Q)

⌉⌉
, p ∈ NS ∩ (S(Q) ∪NO),

ATEr(Q) = 1
/( ∑

b∈Br(Q)

NVrb(Q)

dr +
∑

j∈SRrb(Q)\ND ctp(j)bc∗
+
nbor
dor

)
, c∗ = cjrb(Q),

ATr(Q) = 1
/( ∑

b∈Br(Q)

NVrb(Q)

dr +
∑

j∈SRrb(Q)\ND ctp(j)bc∗
+
nbor
dor

+
nvcr(X)

dcr

)
, c∗ = cjrb(Q),

nvcr(Q) =
∑

b∈V Cr(Q)

nvcrb(Q),

V Cr(Q) = {b | b ∈ V Cr, nvcrb(Q) > 0},

nvcrb(Q)=
⌈⌈max{0, pasr−Zr(Q)}nvcrb

pasr

⌉⌉
, b=1, . . . , b∗−1,
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nvcrb∗(Q)=
⌈⌈max{0, pasr−Zr(Q)}−

∑b∗−1
b=1 nvcrb(Q)capb

capb∗

⌉⌉
, nvcrb=0, b=b∗+1, . . . , |V Cr|,

where cap1 ≤ · · · ≤ cap|V Cr|, V Cr = {1, . . . , |V Cr|},
b∗−1∑
b=1

nvcrb(Q)capb < max{0, pasr−Zr(Q)} and
b∗∑
b=1

nvcrb(Q)capb ≥ max{0, pasr−Zr(Q)}.

BNpc(Q) =
⌈⌈ ∑

r∈Rp(Q)

∑
b∈Bpc(Q)

(nvrb +NVrb(Q))ctpbc
tp

⌉⌉
, j ∈ ND, p(j) ∈ NS ∩ S(Q).

The feasible domain D is defined by the following constraints.

CC(X) ≤ ucc, (14)

OC(X) ≤ uoc, (15)

Zr(Q) ≤ pasr + min
b∈Br(Q)

{capb} − 1, r ∈ R(Q), (16)

Zr(Q) ≥ min
b∈V Cr

{capb}, r ∈ R(Q), (17)

TPq(Q) + ooq ≤ oq, q ∈ T (Q), (18)

ATr(Q) ≤ utr, r ∈ R(Q), (19)

ncpc +NCpc(Q) ≤ ucpc, p ∈ Sc(Q), c ∈ C(Q), (20)

ncpc +NCpc(Q) = BNpc(Q), p ∈ S(Q) ∪NO, c ∈ C(Q). (21)

A Particle Swarm Optimization (PSO) technique is used to solve the above problem,

see Clerc [1], Kennedy and Eberhart [4] and Pedersen and Chipperfield [5]. PSO is a

metaheuristic, which searches among candidate solutions of an optimization problem.

Each solution is considered as a particle in a swarm. For the problem (13)-(21), the

solution process starts with a group of random particles (Q,Qi), i = 1, . . . , k, where Qi

is an extension of the partial solution Q determined in Steps 1-4 by a solution of the

problem (13)-(21). Thus, (Q,Qi) is a complete solution of Opt.

Each particle is associated with its position, velocity and value. Velocity determines the in-

crement of the position when passing from one iteration of the PSO algorithm to the next.

Let NV max
rb = dpasr/capbe. In our algorithm, position of a particle (Q,Qi) is determined

by a set NV (Q,Qi) := {NVrb(Q,Qi) | r ∈ Rb(Q), b ∈ B(Q)}, where the number of e-

buses NVrb(Q,Qi) is selected randomly from the set {0, 1, . . . , NV max
rb }. Velocity of a par-
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ticle (Q,Qi) is determined as a set of numbers W := {Wrb(Q,Qi) | r ∈ Rb(Q), b ∈ B(Q)},

where Wrb(Q,Qi) is selected randomly from the set {−NV max
rb ,−NV max

rb +1, . . . , NV max
rb }.

Value of a particle (Q,Qi) is determined as V (Q,Qi). It is initialized as V (Q,Qi) := −∞.

PSO operates with the best known positions of each particle and the swarm as a whole

over all past iterations of the algorithm. In our implementation, the best known position

of a particle (Q,Qi) is denoted as NV B(Q,Qi) = {NV Brb(Q,Qi) | r ∈ Rb(Q), b ∈

B(Q)} and it is initialized as the value NV (Q,Qi) in the first iteration. The best known

position of the swarm is the position of its “best particle”, denoted as (Q,Qi∗). The

best particle has the largest value V (Q,Qi∗). The best known position is denoted as

NV G = {NV Grb | r ∈ Rb(Q), b ∈ B(Q)}.

Define the number of iterations of the PSO algorithm. In each iteration, perform the

following steps (a)-(e) for each particle (Q,Qi), i ∈ {1, . . . , k}.

(a) Pick control parameters up and ug as random rational numbers from the interval (0, 1).

Determine control parameters ω, ϕp and ϕg. At present, values ω = 0.729 and ϕp = ϕg =

1.49445 are used.

(b) For each pair (r, b), r ∈ Rb(Q), b ∈ B(Q), update velocity such that Wrb(Q,Qi) :=

ωWrb(Q,Qi) + ϕpup(NV Brb(Q,Qi)−NVrb(Q,Qi)) + ϕgug(NV Grb −NVrb(Q,Qi)).

(c) Pick random rational numbers λrb, r ∈ Rb(Q), b ∈ B(Q), from the interval (0, 1).

If ω
ω+ϕpCp+ϕgug

≤ λrb < ω+ϕpup
ω+ϕpup+ϕgug

, then update NVrb(Q,Qi) := NVrb(Q,Qi) +

bωWrb(Q,Qi)c. If λrb ≥ ω+ϕpup
ω+ϕpup+ϕgug

, then update NVrb(Q,Qi) := NVrb(Q,Qi) +

dωWrb(Q,Qi)e.

(d) For each node p ∈ S(Q)\NO, denote the set of transformer nodes connected to node

p according to the partial solution Q as Lp(Q). Denote by Mq(Q) = {p ∈ S(Q) | q ∈

Lq(Q)} the set of new non-transformer nodes linked with transformer node q. Sets Lp(Q),

p ∈ S(Q)\NO, sets Mq(Q), q ∈ T , and set T (Q) of new transformers are randomly

determined as follows. For each node p ∈ S(Q)\NO, define probability prqp of linking

transformer node q ∈ TEp with p. This probability can be higher for larger output power
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oq and it can be higher for smaller cost clqp + cbqyq, where yq = 1 if q 6∈ TO and yq = 0 if

q ∈ TO. Link each node p ∈ S(Q)\NO with m nodes q ∈ T .

(e) Calculate CC(Q,Qi) and OC(Q,Qi). If CC(Q,Qi) ≤ ucc and OC(Q,Qi) ≤ uoc, then

perform the following computations. Calculate new value V (Q,Qi) of the particle (Q,Qi).

If it is increased, then update NV B(Q,Qi) := NV (Q,Qi). If the new value V (Q,Qi)

exceeds V (Q,Qi∗), then re-set NV G := NV (Q,Qi) and (Q,Qi∗) = (Q,Qi).

Let (Q,Qi∗) be the best particle at the end of the last iteration of the PSO algorithm. If

V (Q,Qi∗) > −∞, then re-set Q := Q ∪ {(Q,Qi∗)}. If computational time permits, then

perform Step 2, else perform Step 6.

Step 6. Output set Q, several appropriate solutions of this set or a single solution Q∗ such

that V (Q∗) = maxQ∈Q V (Q).

2.3 Computer implementation

Algorithm RH is implemented in C++ for Windows. It can be used as an executable file

mobopt.exe or as a DLL-file moboptdll.dll. These files can be used on a PC of a standard

configuration. Parameters of the command line for mobopt.exe are:

• Full name of directory with input data.

• Full name of directory with configuration file probl.ini.

For example: d:/gn/soft/bat dll/mobopt.exe d:/gn/soft/mobility/mobopt/Minsk/4

d:/gn/soft/mobility/mobopt, where d:/gn/soft/bat dll is the directory with mobopt.exe,

d:/gn/soft/mobility/mobopt/Minsk/4 is the directory with the input data, and

d:/gn/soft/mobility/mobopt is the directory with the configuration file probl.ini.

From Python mobopt.exe can be executed in the following way:

import subprocess

argexe=’d:/gn/soft/mobility/mobopt/bc/mobopt.exe’

arg1=’ d:/gn/soft/mobility/mobopt/Minsk/4’

arg2=’ d:/gn/soft/mobility/mobopt/bc’

args = argexe + arg1+ arg2
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p=subprocess.Popen(args, shell = False)

p.wait()

ret=p.poll()

File moboptdll.dll contains function MOBOPT, whose prototype is int MOBOPT(char *

dir,char * dir ini), where dir is the full name of the directory with the input data and dir ini

is the full name of the directory with the configuration file probl.ini. The return code of the

function MOBOPT is equal to 0 if the optimization was successful. In this case, all the output

information is placed into the file solution.out in the text format and in the file solution.json

in the JSON format in the directory dir. If the return code is not 0, then the corresponding

error information is placed into the file errors.out in the directory dir. An example of calling

the function MOBOPT from Python (32-bit) is given below.

import ctypes

mobDll=ctypes.WinDLL(”d:/gn/soft/bat dll/moboptdll.dll”)

from ctypes import *

p1=create string buffer(b”d:/gn/soft/mobility/mobopt/Minsk/4”)

p2=create string buffer(b”d:/gn/soft/mobility/mobopt/bc”)

ret=mobDll.MOBOPT(p1,p2)

File probl.ini is used for setting the following parameters:

• json – format of the input data, json ∈ {0, 1, 2}, where

json = 0 if the input data are in the text format,

json = 1 if the input data are in the JSON format in separate files,

json = 2 if the input data are in the JSON format in one file.

json = 2 is the default value.

• nit – maximum number of iterations of RH, nit = 10000 is the default value.

• max time – maximum calculation time in seconds, max time = 600 is the default value.

• m – number of links of any charging station location with the transformers, m = 1 is the

default value.
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• w – control parameter ω of the PSO method, w = 0.729 is the default value.

• fiP – control parameter ϕp of the PSO method, fiP = 1.49445 is the default value.

• fiG – control parameter ϕg of the PSO method, fiP = 1.49445 is the default value.

2.4 Formats of the input files

Two formats of the input files are implemented. One of them is the JSON format, see

http://www.json.org/index.html for a description, and the other is the simple text format. If

the input parameter json = 2, then the file problem.json is transformed into the following

files: probl.json, stations.json, buses.json, cbuses.json, nodes st.json, graph.json, transf.json,

routes.json, nodes nm.json, nodes ch time.json, croutes.json, tdepots.json, buses1.json and

buses2.json. Then, each of these files is converted into the corresponding text file. Finally,

the data from the text files are imported and analyzed for errors. If there are errors, then

the information about them is placed into the file errors.out in the directory specified by the

parameter dir.

2.4.1 JSON format of the input file

If the input data are prepared in the JSON format in separated files, then their names must

be the following: probl.json, stations.json, buses.json, cbuses.json, nodes st.json, graph.json,

transf.json, routes.json, nodes ch time.json, and tdepots.json. File croutes.json is created only

if there are routes already served by e-buses. File nodes nm.json is prepared only if the sets

NMb are non-empty. Files buses1.json and buses2.json are prepared only if the sets B1 and B2,

respectively, are non-empty.

File probl.json includes values of the following parameters: m – number of links of any

location with a new charging station with the transformer nodes, ucc – upper bound on the

total capital cost, uoc – upper bound on the total operating, depreciation and energy cost, and

dtp – duration of the decisive time period. For example:

{

”m”: 2,

”ucc”: 10000000,
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”uoc”: 5000000,

”dtp”: 180

}

File stations.json describes the set C of charging stations and defines values of the following

parameters: fn c – full name of the charging station type c, sn c – short name, po c – nominal

power of any station, cc cap c – capital cost of any station, cc ope c – operating and depreciation

cost of any station. For example:

{ ”C”: [{

”fn c”: ”Charging station 1”,

”sn c”: ”CS1”,

”po c”: 200,

”cc cap c”: 250000,

”cc ope c”: 5000

}

]}

File buses.json describes the set B and defines values of the following parameters: fn b – full

name of the e-bus type b, sn c – short name, cap b – passenger capacity of any e-bus, cv cap b

– capital cost of any e-bus, and C b – array of the short names of the eligible charging stations.

For example:

{ ”B”: [{

”fn b”: ”Vitovt Max Electro E433”,

”sn b”: ”E433”,

”cap b”: 153,

”cv cap v”: 475000,

”C b”: [”CS1”]

}

]}

File cbuses.json describes the set V C of the conventional vehicle types and defines values

of the following parameters: fn b – full name of the conventional vehicle type b, sn c – short

name, and cap b – passenger capacity of any vehicle. For example:
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{ ”VC”: [{

”fn b”: ”Diesel bus MAZ-103”,

”sn b”: ”M103”,

”cap b”: 100

}

]}

File nodes st.json describes the setNP of the parent nodes and defines values of the following

parameters: fn p – full name of the parent node p, sn p – short name, C p – array of the charging

station types eligible for opening at p, nc pc – array of the numbers ncpc of old charging stations

at p, uc pc – array of the upper bounds ucpc on the number of charging stations of type c to be

opened at p. For example:

{ ”NP”: [{

”fn p”: ”Vaneeva”,

”sn p”: ”V”,

”C p”: [”CS1”],

”nc pc”: [1],

”uc pc”: [4]

}

]}

File graph.json describes the set NN of the network G and defines values of the following

parameters: fn j – full name of the node j, sn j – short name, sn j p – short name of the parent

node p(j), and type j – type of the node (1 for depots, 2 for terminal stops and 3 for regular

stops). For example:

{ ”NN”: [{

”fn j”: ”Vaneeva-Depot”,

”sn j”: ”Vaneeva-D”,

”sn j p”: ”V”,

”type j”: 1

}

]}
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File transf.json describes the set T of transformer nodes and defines values of the following

parameters: fn q – full name of the transformer node q, sn q – short name, o q – transformer

electrical output power, cb q – transformer capital (building) cost, oo q – transformer electrical

power that is used to supply old charging stations, sn qp – – array of the short names of eligible

non-transformer nodes p, and cl qp – array of the costs of connection of eligible non-transformer

nodes p with the transformer node q. For example:

{ ”EE”: [{

”fn q”: ”Vaneeva-Transformer 1”,

”sn q”: ”Vaneeva-T1”,

”o q”: 800,

”cb q”: 0,

”oo q”: 200,

”sn qp”: [”V”],

”cl qp”: [0]

}

]}

File routes.json describes the set R of the routes and defines values of the following param-

eters: fn r – full name of the route r, sn r – short name, w r – preference coefficient, ut r –

upper bound on the average length of the traffic interval of all e-buses and conventional buses

of any type, s r – array of the short names of the nodes in r, l r – array of the distances between

the nodes in r, B r – array of the short names of the e-bus types eligible for the route, nbo rb

– array of the numbers nborb of old e-buses of type b serving the route, dm rb – array of the

single-charge ranges (maximal single-charge travel distances) of e-buses of type b, ce rb – array

of the operating, depreciation and energy costs cvoperb , d rb – array of the durations drb of any

single cycle of any e-bus eligible for the route, do rb – array of the durations dorb of any single

cycle of any old e-bus eligible for the route, VC r – array of short names of the types of conven-

tional vehicles serving the route, nvc rb – array of the numbers nvcrb of conventional vehicles

serving the route, and doc rb – array of the durations dcrb of any single cycle of conventional

vehicles serving the route. For example:

{ ”R”: [{
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”fn r”: ”Railway Station - DS Viasnjanka”,

”sn r”: ”A1”,

”w r”: 1,

”ut r”: 18,

”s r”: [”Vaneeva-D”,”Kira-T”,”Vias-T”,”Kira-T”],

”l r”: [7,9,9],

”B r”: [”E433”,”E420”,”E321”,”E490”,”T32100D”,”T42003D”],

”nbo rb”: [4,0,0,0,0,0],

”dm rb”: [15,20,30,25,16,15],

”ce rb”: [268880,209520,209520,168400,209520,209520],

”d rb”: [60,60,60,60,60,60],

”do rb”: [72,72,72,72,72,72],

”VC r”: [”M103”,”M1035”],

”nvc rb”: [3,2],

”doc rb”: [60,60]

}

]}

File nodes ch time.json describes charging times for the set NP of the parent nodes and

defines: sn p – short name of the parent node p, and ct pbc – array of the charging times ctpbc,

c ∈ Cp, b ∈ Bc. For example:

{ ”CT NP”: [{

”sn p”: ”V”,

”ct pb 1”: [6,6,10,6,40,30]

}

]}

File croutes.json is formed if there are routes that are already served by e-buses. It describes

charging stations that are already opened at the nodes belonging to a route r ∈ R and defines:

sn r – short name of the route, and c r – array of the short names of the existing charging

stations for each node from πr = (j0, j1, . . . , jr). If no station is opened at a node jk, then

string ”-1” is used as the corresponding name. For example:
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{ ”CO”: [{

”sn r”: ”A1”,

”c r”: [”CS1”,”CS1”,”CS1”]

}

]}

File tdepots.json describes the set ND of depot nodes and defines: sn j – short name of the

depot node j, and t depot j – duration ttdepotj of a time interval of maximum length, in which

all e-buses assigned to the depot at node j ∈ ND are in this depot. For example:

{ ”ND”: [{

”sn j”: ”Vaneeva-D”,

”t depot j”: 240

}

]}

File nodes nm.json describes sets NMb of “obligatory” nodes for an e-bus of type b and

defines: sn b – short name of the e-bus type b, and sn b j – array of the short names of the

nodes from NN such that if j belongs to r to be served by an e-bus of type b then at least one

charging station of type c ∈ Cb must be opened at node p(j). For example:

{ ”NM b”: [{

”sn b”: ”E433”,

”sn b j”: [”Kira-D”,”Vias-S”]

} ]}

File buses1.json describes the set B1 of e-buses with batteries which have enough capacity

to drive with a single charge at the corresponding depot during the day and defines sn b – array

of the short names of the e-bus types from B1. For example:

{ ”B 1”: {

”sn b”: [”E420”]

}

}

File buses2.json describes the set B2 of e-buses with one charge at the corresponding depot

and one charge at a non-depot node during the day and defines sn b – array of the short names
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of the e-bus types from B2. For example:

{ ”B 2”: {

”sn b”: [”E333”]

}

}

2.4.2 Text format of the input files

If data are prepared in the text format, then the following files must be prepared: probl.txt, sta-

tions.txt, buses.txt, cbuses.txt, nodes st.txt, graph.txt, transf.txt, routes.txt, nodes ch time.txt,

and tdepots.txt. File croutes.txt is created only if there are routes already served by e-buses. File

nodes nm.txt is prepared only if the sets NMb are non-empty. Files buses1.txt and buses2.txt

are prepared only if the sets B1 and B2 are non-empty, respectively. Each file can include

comments. The comments must start with the symbols // and be placed in the beginning of

the file. The main body of the file starts with a new line immediately after the comments.

Values of the different input parameters are separated by comma.

File probl.txt consists of one row with the following values: number m of links of any new

charging station with the transformer nodes, upper bound ucc on the total capital cost, upper

bound uoc on the total operating, depreciation and energy cost, and duration dtp of the decisive

time period. For example:

2,10000000,5000000,180

File stations.txt consists of one row for each element of the set C. Each row contains: full

name of the charging station type, short name of the charging station type, nominal power poc,

capital cost cccapc and operating and depreciation cost ccopec . For example:

Charging station 1,CS1,200,250000,5000

File buses.txt consists of two rows for each element of the set B. The first row contains:

full name of the e-bus type, short name of the e-bus type, passenger capacity capb, capital cost

cvcapb . The second row contains the short names of the eligible charging stations for the e-bus

type. For example:

Vitovt Max Electro E433,E433,153,475000

CS1
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File cbuses.txt consists of one row for each element of the set V C of conventional vehicle

types. Each row contains: full name of the conventional vehicle type, short name of the

conventional vehicle type, and passenger capacity capb. For example:

Diesel bus MAZ-103,M103,100

File nodes st.txt consists of 4 rows for each element of the set NP of parent nodes. The first

row contains full name of parent node p and short name of parent node p. Next rows contain

short names of the eligible charging stations, numbers ncpc of the old charging stations, and

the upper bounds ucpc. For example:

Vaneeva,V

CS1

1

4

File graph.txt consists of one row for each element of the set NN . Each row contains: full

name of the node, short name of node, short name of the parent node and the type of the node

(1 for the depot node, 2 for the terminal node and 3 for the regular en route node. For example:

Vaneeva-Depot,Vaneeva-D,V,1

Kira-Terminal,Kira-T,Kira,2

Ch.Ri-Stop,Ch.Ri-S,Ch.Ri,3

File transf.txt consists of 3 rows for each element of the set T . The first row contains: full

name of the transformer, short name of the transformer, transformer electrical output power

oq, transformer capital (building) cost cbq (0 if it has already been built), and already used

transformer electrical power ooq to supply old charging stations. The second row contains short

names of the non-transformer nodes eligible for linking with the transformer node. The third

row contains costs of connection of nodes in the second row with the transformer node (0 if the

corresponding connection exists). For example:

Vias-Transformer 1,Vias-T1,800,0,200

Vias

0

File routes.txt consists of 12 rows for each route of the set R. The rows contain:

• row 1: full name of the route, short name of the route, preference coefficient wr, and
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upper bound utr.

• row 2: sequence πr = (j0, j1, . . . , jr) of short names of the nodes.

• row 3: distances between stops (nodes).

• row 4: short names of e-buses eligible for the route.

• row 5: numbers nborb of old e-buses serving the route.

• row 6: maximal distance of e-buses eligible for the route, without recharging.

• row 7: operating, depreciation and energy cost cvoperb .

• row 8: durations drb.

• row 9: durations dorb.

• row 10: short names of conventional vehicles serving the route.

• row 11: numbers nvcrb of conventional vehicles.

• row 12: durations dcrb.

For example:

Railway Station - DS Viasnjanka,A1,1,18

Vaneeva-D, Kira-T, Vias-T, Kira-T

7,9,9

E433,E420,E321,E490,T32100D,T42003D

4,0,0,0,0,0

15,20,30,25,16,15

268880,209520,209520,168400,209520,209520

60,60,60,60,60,60

72,72,72,72,72,72

M103,M1035

3,2

60,60
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File nodes ch time.txt consists of 1 + |Cp| rows for p ∈ NP . The first row contains short

name of parent node p. Each row from |Cp| rows contain charging times ctpbc at charging station

of type c ∈ Cp for each b ∈ Cb. For example:

V

6,6,10,6,40,30

File croutes.txt is created only if there are routes that are already served by the e-buses.

It describes charging stations that have already been opened at the nodes belonging to the

routes from R. It consists of two rows for each route. The first row contains short name of

the route r. The second row contains short names of the charging stations for each node from

πr = (j0, j1, . . . , jr). If no station is opened for some node jk, then symbols ”-1” are used as

the short name. For example:

A1

CS1,CS1,-1

File tdepots.txt consists of one row for each element from the set ND of depot nodes. The

row for node j contains short name of the depot node and the duration (min) tdepotj . For

example:

Vaneeva-D,240

File stops obl.txt consists of two rows for each set NMb of “obligatory” nodes for e-bus of

type b. The first row contains only the short name of the e-bus type b. The second row contains

short names of the nodes j ∈ NN . If node j belongs to a route to be served by an e-bus of type

b, then at least one charging station of type c ∈ Cb must be opened at node p(j). For example:

E433

Kira-D,Vias-S

File buses1 consists of one row with short names of e-bus types from the set B1 with

batteries which have enough capacity to drive with a single charge at a depot during the day.

For example:

E420

File buses2.txt consists of one row with short names of e-bus types from the set B2 with

batteries which have enough capacity to drive with one charge at a depot and one charge at a

non-depot node during the day. For example:
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E333

2.5 Formats of the output files

Two formats of the output files are implemented. One of them is the JSON format, and the

second is the simple text format.

2.5.1 JSON format of the output file

Object Solutions defines output objects CR and X for each of the obtained solutions. The

object CR defines values of the following parameters: V – total value V (X), CC – total capital

cost CC(X), and OC – total operating, depreciation and energy cost OC(X). For example:

{ ”CR” : { ”V”: 1260, ”CC”: 7.88e+006, ”OC”: 3.01224e+006 } }

Object X defines values of the following parameters: R X – routes selected for replacement

of conventional vehicles by e-buses and their parameters, S – charging stations to be opened

and transformers to be built, and T – power requirements for the transformers.

Object R X defines values of the following parameters for each route r: r – full name of the

route, ATE r – length of the traffic interval, Z r – total passenger capacity of the new e-buses,

NV r – total number of the new buses, B r – full names of the e-bus types, NV rb – numbers

of new e-buses of each type b, CH – nodes for recharging each e-bus and types of the charging

stations to be opened, t – recommended departure order for all the vehicles. For example:

{ ”R X”: [ { ”r”: ”Slavinskogo - Old Airport”, ”ATE r”: 7, ”Z r”: 1260,

”NV r”: 16, ”B r”: [”Vitovt Electro E420”,”Model E321”,”Vitovt Mini Electro E490”],

”NV rb”: [1,6,9], ”CH”: [ {”b”: ”Vitovt Electro E420”, ”Nbc r”:[ {”c”: ”Charg-

ing station 1”,”j”: Kazlova-Depot(Kazlova)}, {”c”: ”Charging station 1”,”j”: ”KalSlav-

Terminal(KalSlav)”}, {”c”: ”Charging station 1”,”j”: ”Aera1-Terminal(Aera1)”}]} ], ”t”:

[ ”E321”, ”E490”, ”E490”, ”E321”, ”E490”, ”E490”, ”E321”, ”E490”, ”E321”, ”E420”,

”E490”, ”E490”, ”E321”, ”E490”, ”E490”, ”E321”] } ] }

Object S defines values of the following parameters: p – full name of the parent node p, c

– full type names of the opened charging stations, NC pc – numbers of the opened charging

stations, L p – full names of transformer types to be connected with the parent node. For

example:
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{ ”S”: [ {”p”: ”Kazlova”,”c”: [”Charging station 1”],”NC pc”: [1], ”L p”: [”Kazlova-

Transformer 1”,”Kazlova-Transformer 2”]} ] }

Object T defines the list of full names of the types of the new transformers. For example:

{ ”T”: [ ”Vaneeva-Transformer 1”, ”Vaneeva-Transformer 2” ] }

Object TP defines values of the following parameters: q – full name of the transformer type,

and TP q – total transformer power requirement. For example, or the Minsk case:

{ ”TP”: [ {”q”: ”Vaneeva-Transformer 1”, ”TP q”: 200}, {”q”: ”Vaneeva-Transformer

2”, ”TP q”: 200} ] }

2.5.2 Text format of the output files

All the obtained solutions are placed into the unique file solution.out. The output for each

solution includes: values V (x), CC(x) and OC(x); selected routes for the replacement of the

conventional vehicles by the e-buses; charging stations to be opened and transformers to be

built; power requirement for each transformer.

For each selected route, the output is:

• Selected e-bus types.

• Numbers of new e-buses of each type.

• Total passenger capacity of new e-buses.

• Capital cost of new e-buses.

• Operating and energy cost of new e-buses.

• Conventional vehicle types remained in operation.

• Numbers of the remained conventional vehicles of each type.

• Average Length of the traffic interval for all vehicles serving the route.

• Parent nodes at which new charging stations have to be opened.

• Recommended order of departure of all the vehicles.

28



2.6 Minsk case of Opt

The experimental software implementing algorithm RH was used to solve instances of the

problem Opt for a set of public transport routes in the city of Minsk. In these instances,

super-capacitor fast-charging technology is used in batteries of all e-buses. Therefore, there

are no e-buses with slow-charging high-capacity batteries. One of these instances is described

below.

There are two e-bus depots: V aneeva (V ) and Kazlova (K). Time intervals for e-buses to

stay in the depots are the same: tdepotj = 240 minutes for j ∈ {V,K}. It is the night time period.

One old charging station is opened at depot V aneeva and each of the e-bus stops Kira, V ias,

Druz, Siar and Daug. New and old charging stations are of the same type and they can charge

an e-bus of any type. Upper bounds on charging times, ctjbc, depend on the e-bus type and

they do not depend on the location of the charging station. Upper bounds on the number of

charging stations are the same for all locations: ucjc = 4. Capital cost of one charging station

is cccapc = 125000 e and operating and depreciation cost of one charging station per year is

ccopec = 5000 e. The power of one charging station is poc = 260 Kw. Parameters of the used

old vehicles are the following. Diesel bus MAZ-103 (M103): 100 passengers, 25 litres/100 km.

Diesel bus MAZ-105 (M105): 160 passengers, 33 litres/100 km. Trolleybus model 420 (T420):

115 passengers. Trolleybus model 333 (T333): 170 passengers.

Any e-bus can feasibly drive from any of the two depots to the closest stop of any route,

eligible for opening a charging station. All eligible stops are terminal stops of some routes, and

they are visited by e-buses in both direct and backward directions of their routes intersecting

at these stops. The value function is defined as Vr(Zr) = Zr for any route. The total distance

travelled by one e-bus of any type in a year is assumed to be 80000 km. The operating and

depreciation costs of e-buses per 100 km range 200-320 e. The energy consumption of e-buses

per 100 km range 150-230 kWh. The cost of energy is 7 e per 100 kWh. Upper bound utr on

the average length of the traffic interval of new and old e-buses of all types on route r is equal

to the length of the traffic interval of conventional passenger vehicles on route r.

Locations for charging stations and their names are 1(Kira), 2(V ias), 3(Akva), 4(RKMC),

5(Ch.Ri), 6(Losh2), 7(Masu), 8(V aneeva), 9(DS Sera), 10(AV Cant), 11(Y Zap), 12(Daug),
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13(Siar), 14(Druz), 15(Kara), 16(Suh5), 17(Mal4), 18(KalSlav), 19(Aera1), 20(V snin),

21(Liab), 22(Pl.Y.Kol), 23(Zdan), 24 (Kazlova). Two transformers (i, 1) and (i, 2) are asso-

ciated with each charging station location i, i = 1, . . . , 24. Charging station location i can only

be linked with transformers (i, 1) and (i, 2) for all i. The costs of building a transformer are

cbi,1 = cbi,2 = 20000e for i = 3, 4, 20, 21, 22, 23. The existing (old) transformers are from the

set TO = {(i, 1), (i, 2) | i = 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24}. The cost of

linking charging station location i with transformer (i, 1) or (i, 2) is the same and it is equal

to cl(i,1)i = cl(i,2)i = 5000e. The output power of any transformer is 800 kW. The upper

bounds on the capital and operating, depreciation and energy costs are ucc = 10000000e and

uoc = 5000000e, respectively. The remaining input data are given in Tables 1, 2 and 3. Pas-

senger capacity, range of one charge drive, cost and time are measured in persons, kilometres,

euros (e) and minutes, respectively.

Table 1: E-bus types. Input data.

b Name Capacity Range of Char.time Cap.cost Oper.& Ener.cost
cvcapb 1 charge ctjbc cvcaprb cvoperb , ∀r

1 Vitovt Max Electro E433 153 15 6 475000 268880
2 Vitovt Electro E420 87 20 6 350000 209520
3 Model E321 83 30 10 400000 205520
4 Vitovt Mini Electro E490 75 25 6 400000 168400
5 Trolleybus 32100D (E321) 85 15 40 370000 209520
6 Trolleybus 42003D (E420) 85 15 30 400000 209520
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Table 2: Routes. Conventional service. Locations to be visited twice are marked with ∗.
ID Name One way route Length Duration Traff.
(depot) between between inter.

stops stops (= utr)

1(V ) A1 (Kira, V ias) 9 30 5
2(V ) A119c (Kira, V ias∗, Akva) (9,4) (15,10) 20
3(V ) A190e (Kira, V ias∗, RKMC) (9,6) (20,10) 20
4(V ) T5 (Kira, Ch.Ri) 5 20 5
5(V ) T6 (Kira, Ch.Ri, Losh2) (5,4) (18,12) 5
6(V ) A69 (Kira,Masu) 11 40 15
7(V ) T20 (Kira, V,DS Sera) (5,4) (25,15) 10
8(V ) T36 (DS Sera,AV Ca, Y Zap) (5,13) 65 10
9(V ) A46 (AV Ca,Masu) 9 35 40
10(V ) T58 (AV Ca,Masu) 9 30 15
11(V ) T59 (Daug, Siar) 13 40 10
12(V ) A38 (Druz,Kara) 8 30 20
13(V ) T43 (Druz, Siar) 7 25 15
14(V ) T40 (Kara,Druz∗, Y Zap) (7,7) 50 10
15(K) T63 (Druz, Y Zap) 9 30 20
16(K) A50c (Suh5, Druz) 15 50 20
17(K) T7 (Suh5, AV Cant) 14 45 10
18(K) T9 (Suh5, Druz) 13 40 15
19(K) A32c (Mal4, Druz) 14 45 10
20(K) A100 (KalSlav, Aera1) 12 45 5
21(K) A91 (V snin, V ias∗, KalSlav) (2,18) 70 20
22(K) A73 (Siar,Druz∗, V ias∗, Liab) (7,9,2) 60 10
23(K) T22 (Kara, P l.Y.Kol) 6 20 10
24(K) A44 (Kara, V ias∗, Zdan) (10,6) 50 10
25(K) A136 (Kara, V ias∗, Zdan) (10,7) 55 30
26(K) T38 (Suh5, KalSlav) 21 70 10
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Table 3: Routes. Input data.

r dr = dor nborb, nborb, nvcrb, nvcrb, nvcrb, nvcrb,
dcr b=E433 b=E420 b=M103 b=M105 b=T420 b=T333

1 60 72 4 0 3 2 0 0
2 50 - 0 0 0 2 0 0
3 60 - 0 0 1 2 0 0
4 40 - 0 0 0 0 2 5
5 60 - 0 0 0 0 4 6
6 80 - 0 0 5 0 0 0
7 80 - 0 0 0 0 2 5
8 130 - 0 0 0 0 3 6
9 70 - 0 0 0 2 0 0
10 60 - 0 0 0 0 2 2
11 80 92 6 0 0 0 2 0
12 60 - 0 0 1 2 0 0
13 50 56 4 0 0 0 2 0
14 100 - 0 0 0 0 2 5
15 60 - 0 0 2 2 0 0
16 100 - 0 0 3 3 0 0
17 90 - 0 0 0 0 2 4
18 80 - 0 0 0 0 1 3
19 90 - 0 0 3 6 0 0
20 90 - 0 0 3 6 0 0
21 140 - 0 0 2 5 0 0
22 120 - 0 0 5 7 0 0
23 40 - 0 0 0 0 3 0
24 100 - 0 0 2 5 0 0
25 110 - 0 0 1 2 0 0
26 140 - 0 0 0 0 6 8
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Solution. One solution is found. Information about this solution is given in Tables 4-6.

Table 4: Minsk case. Solution value and costs

Routes Value Capital cost Operating, depreciation & energy cost

A1,T59,T43,T9,T7,A46 2684 9915000 4800480

Table 5: Minsk case. Infrastructure

Charging stations Routes

Vaneeva. Old: 1 A1,T59,T43,A46
Kira. Old: 1 A1
Vias. Old: 1 A1
Masu. New: 1 A46
AV Ca. New: 1 T7,A46
Daug. Old: 1 T59
Druz. Old: 1 T43,T9
Kazlova. New: 1 T9,T7
Suh5. New: 1 T9,T7

Table 6: Minsk case. Fleet

Routes Old New Old
e-buses e-buses buses

A1 E433 - 4 E433 - 4 M103 - 1
T59 E433 - 7 E433 - 1 M103 - 1
T43 E433 - 4 E433 - 1 M103 - 1
T9 E433 - 4 M103 - 1
T7 E433 - 6
A46 E433 - 1, E420 - 1 M103 - 1

3 Efficient algorithm and data structure for DepOpt

Problem DepOpt studied in this section deals with a single depot and a set of e-buses with

slow charging batteries, repetitively charging at this depot and serving a given subset of trips

each. The problem is to determine the required electric power supplied to the depot by the

city power grid, the type and the number of charging stations of this type in the depot, options

of e-bus batteries and charging times of each e-bus while it is in the depot such that the total
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daily cost of charging equipment of the depot, of e-bus batteries and the consumed energy is

minimized, provided that the arrival and departure times of e-buses to/from the depot, the

dynamic upper bound on the supplied power and functions of charge and discharge of the

batteries are addressed.

In the previous Deliverable, problem DepOpt was formulated as

minF (pD, c,K,b,u
c, sa) =

=
cost(pD)

365
+

K

365
(costcap(c) + costope(c)) +

∑
j∈J

costbjN jχj(s
low
j )

365
+

m−1∑
i=1

cei
∑
j∈J

f ′jcδ
i
j, (22)

subject to

sapj = ϕjp(s
dp
j ), p = 1, . . . , nj, j ∈ J. (23)

sapj = fjc(u
ap
j ), p = 1, . . . , nj, j ∈ J, (24)

sdp+1
j = fjc(u

ap
j + ucpj ), p = 1, . . . , nj − 1, j ∈ J, (25)

sd1
j = fjc(u

dnj

j + u
cnj

j ), j ∈ J, (26)

ucpj =
∑
i∈Ipj

δij, p = 1, . . . , nj, j ∈ J, (27)

0 ≤ δij ≤ (ti+1 − ti), i ∈ Ipj , p = 1, . . . , nj, j ∈ J, (28)

δij = 0, i ∈ {1, . . . ,m− 1}\ ∪nj

p=1 I
p
j , j ∈ J, (29)

sj(bj) ≤ sapj ≤ s̄j(bj), p = 1, . . . , nj, j ∈ J, (30)

sj(bj) ≤ sdpj ≤ s̄j(bj), p = 1, . . . , nj, j ∈ J, (31)

0 ≤ udpj ≤ τmaxjc , p = 1, . . . , nj, j ∈ J, (32)

0 ≤ ucpj ≤ τmaxjc , p = 1, . . . , nj, j ∈ J, (33)∑
j∈J

δij ≤ min{kci(Pi), K}(ti+1 − ti), i = 1, . . . ,m− 1, (34)

pD ∈ ΘD, (35)

c ∈ C, (36)

K ≤ bpD/Pcc, (37)

bj ∈ Bcj, j ∈ J, (38)
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where the given parameters and the variables are determined in the previous Deliverable. Con-

straints (23) define SOC level sapj of e-bus j at the time of its p-th arrival to the depot if at the

time of its p-th departure from the depot it was equal to sdpj . Constraints (24) define charging

time uapj required to restore the SOC level sapj of the e-bus j from its minimal SOC level sminj .

Relations (25) specify SOC level sdp+1
j of e-bus j at the time of p + 1-th departure from the

depot after its charging over time ucpj in the interval between p-th arrival to and p + 1-th de-

parture from the depot. Constraints (26) require that the initial SOC levels sd1
j of all e-buses

must be restored prior to their first departure from the depot on the next day. Constraints

(27) represent the total charging time ucpj of e-bus j between its p-th arrival to the depot and

p + 1-th departure from it. Constraints (28) indicate that charging time δij of the e-bus j in

time interval i is positive and does not exceed its duration. Constraints (29) set charging time

δij to zero for e-bus j in the time interval i, when the e-bus is outside the depot. Constraints

(30) specify the range of the SOC level sapj of e-bus j at its p-th arrival to the depot. Similarly,

constraints (31) specify the range of the SOC level sdpj of e-bus j at its p-th departure from the

depot. Constraints (32) require that the charging time udpj of e-bus j at its p-th departure is

positive and it does not exceed the upper bound. Similarly, constraints (33) require that the

charging time ucpj of e-bus j in the interval between its p-th arrival and p + 1-th departure is

positive and it does not exceed the upper bound. Constraints (34) limit the total charging time

of all e-buses J in the time interval i by the available charging time derived for the parallel

charging stations from the given supplied power. Constraint (35) restricts the power supplied

to the depot by a given range. Constraint (36) indicates that type c of charging station can

be selected from given set C. Constraint (37) limits the number of charging stations K by an

upper bound derived from the supplied power. Constraints (38) state that the battery type bj

of e-bus j can be selected from a set Bcj.

3.1 Computational complexity of DepOpt

In this section, we prove that DepOpt is NP-hard in the strong sense.

Theorem 3 Problem DepOpt is NP-hard in the strong sense even if all e-buses arrive to the

depot at the same time, they depart from the depot at the same time, their charging times are
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given constants, the supplied power is unlimited, and the only non-zero cost is the capital cost

of the charging stations.

Proof: Let there be 3k e-buses, their charging times be equal to hi, i = 1, . . . , 3k, and satisfy∑3k
i=1 hi = kH and H/4 < hi < H/2, i = 1, . . . , 3k. E-buses arrive to the depot at time zero

and depart at time H. It is easy to see that the NP-complete in the strong sense problem

3-Partition formulated in Section 2.1 is equivalent to the problem DepOpt which asks for a

charging plan whose cost does not exceed kC, where C is the cost of one charging station.

3.2 Solution method for DepOpt

We suggest to employ the following four-level decomposition scheme for solving the problem

DepOpt, which is illustrated in Fig. 1.

Figure 1: Decomposition scheme.

At the lower level, a sub-problem B3(pD, c,K,b) is solved for various fixed sets (pD, c,K,b).

For each such set the optimal charging times uc(pD, c,K,b) of the e-buses and respective SOC

levels sa(pD, c,K,b) on their arrivals to the depot are selected from the set V (pD, c,K,b)

to minimize the total daily cost of the e-bus batteries and the consumed energy. The set

V (pD, c,K,b) is determined by the constraints (23)-(34).
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At the third level, for a given triple (pD, c,b) the number K(pD, c,b) of charging stations

c and respective uc(pD, c,K(pD, c,b),b), sa(pD, c,K(pD, c,b),b) are sought that minimize the

total daily cost of these charging stations, given options of e-bus batteries and consumed energy.

This sub-problem is referred to as B2(pD, c,b).

At the second level, for a given power pD supplied to the depot, a sub-problem B1(pD) of

selection the type c(pD) ∈ C of charging stations and battery options b(pD)= (bj(pD)|j ∈ J),

bj(pD) ∈ Bcj, j ∈ J is solved. The objective function in this sub-problem is the total daily cost

of charging stations in the depot, e-bus batteries and consumed energy.

At the upper level, a sub-problem B0 of one-dimensional search in the discrete interval

[p1
D, p

k̄
D] of value pD is performed to determine the optimal value p∗D of the electric power

supplied to the depot that minimizes the total daily cost of charging infrastructure of the depot

(charging stations, transformers, etc), e-bus batteries and consumed energy. The sub-problems

are solved as follows.

1. Sub-problem B3(pD, c,K,b)(to be solved for a fixed set (pD, c,K,b)):

min Φ3(uc, sa) =
{∑

j∈J

costbj
Njχj(s

low
j )

365
+

m−1∑
i=1

cei

∑
j∈J

f ′jcδ
i
j

}
,

subject to (23)-(34). The variables to be determined are sdpj , sapj , ucpj , uapj and δij, p = 1, . . . , nj,

i = 1, . . . ,m− 1, j ∈ J .

In the sub-problem B3(pD, c,K,b) the distribution of charging time at K charging stations

of type c among partially discharged e-buses equipped with the batteries bj is optimized while

these e-buses are in the depot. The objective function of the sub-problem is the daily cost of

all e-bus batteries and consumed energy.

We will now show that for a sufficiently general case of piecewise linear functions ϕ(·) and

f(·) this sub-problem reduces to a Mixed Integer Linear Programming problem. Assume that

ϕjp(s) = akjps+ bkjp if skjp ≤ s ≤ s̄kjp, k = 1, . . . , ljp,

sk+1
jp = s̄kjp, k = 1, . . . , ljp − 1, s1

jp = sj, s̄
ljp
jp = s̄j,

and

fjc(u) = ckjcu+ dkjc if ukjc ≤ u ≤ ūkjc, k = 1, . . . , ljc,

uk+1
jc = ūkjc, k = 1, . . . , ljc − 1, u1

jc = 0, ū
ljc
jp = τ̄jc.
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Introduce binary variables wkjp and continuous variables xkjp that satisfy the following con-

straints.

ϕjp(s) =

ljp∑
k=1

akjpx
k
jp +

ljp∑
k=1

bkjpw
k
jp, (39)

s =

ljp∑
k=1

xkjp, (40)

ljp∑
k=1

wkjp = 1, (41)

skjpw
k
jp ≤ xkjp ≤ s̄kjpw

k
jp, (42)

wkjp ∈ {0, 1}. (43)

In a similar way, introduce binary variables vkjp and continuous variables ykjp that satisfy the

following constraints.

fjc(u) =

ljc∑
k=1

ckjcy
k
jc +

ljc∑
k=1

dkjcv
k
jc, (44)

u =

ljc∑
k=1

ykjc, (45)

ljc∑
k=1

vkjc = 1, (46)

ukjcv
k
jc ≤ ykjc ≤ ūkjcv

k
jc, (47)

vkjc ∈ {0, 1}. (48)

After (39)-(43) have been incorporated into (23) and (44)-(48) into (24)-(26), the sub-

problem B3(pD, c,K,b) becomes a MILP problem.

Denote solution of the sub-problem B3(pD, c,K,b) as uc(pD, c,K,b), sa(pD, c,K,b), and its

value as F3(pD, c,K,b). Set F3(pD, c,K,b)=∞ if this sub-problem is unsolvable.

2. Sub-problem B2(pD, c,b)(to be solved for a fixed upper bound pD of the supplied

power, type c of charging stations and battery options b ):

min Φ2(K) =
K(costcap(c) + costope(c))

365
+ F3(pD, c,K,b),
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subject to (37) under fixed pD, c,b. Objective function of the sub-problem is a sum of an

increasing linear function and a decreasing function F3(pD, c,K,b) of the parameter K on the

given segment. The function Φ2(K) may have several minima in general. Therefore, in order

to solve the sub-problem one can use directed search of local search methods on a discrete

segment. Denote solution of the sub-problem as K(pD, c,b) and its value as F2(pD, c,b). Set

F2(pD, c,b) =∞ if the sub-problem has no solution.

3. Sub-problem B1(pD)(to be solved for a fixed upper bound pD of the supplied power):

min Φ1(c,b) = F2(pD, c,b),

subject to (36) and (38). The sub-problem is to determine the type c ∈ C of the charging

stations and battery options b =(bj|j ∈ J), bj ∈ Bcj, j ∈ J . The sub-problem B1(pD) is

a discrete programming problem. This sub-problem can be solved by directed search among

feasible pairs (c,b) and solving a sub-problem B2(pD, c,b) for each such pair. For deleting

infeasible pairs in the directed search, the following necessary conditions are used.

ϕjp(sj) ≥ sj, p = 1, . . . , nj, j ∈ J, (49)

Denote an exact solution of sub-problem B1(pD) as (c(pD),b (pD)) and its value as F1(pD).

Set F1(pD) =∞ if the sub-problem is unsolvable.

4. Sub-problem B0:

min Φ =
cost(pD)

365
+ F1(pD),

subject to (35). Denote an exact solution of this sub-problem as p∗D.

Properties of sub-problem B0

The function Φ is a sum of two functions of the variable pD defined on a given discrete

interval [p1
D, p

k̄
D]. It is natural to assume that cost(pD) increases (or does not decrease) with

growth of pD. The function F1(pD) decreases (does not increase) with the growth of pD.

This follows from the fact that the solution (c(pD), K(pD),b (pD)) of the sub-problem B1(pD)

remains feasible for any p′D ≥ pD.

The function Φ may have multiple extrema in general. Therefore, the sub-problem B0 can

be solved by a directed search or local search methods on the discrete segment [p1
D, p

k̄
D].
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It is easy to verify that if all sub-problems of the decomposition scheme are

solved exactly then p∗D, c(p∗D),b(p∗D), K(c(p∗D),b(p∗D)), uc(c(p∗D), K(c(p∗D),b(p∗D)),b(p∗D)),

sa(c(p∗D), K(c(p∗D),b(p∗D)),b(p∗D)) constitute an exact solution p∗D, c
∗, K∗,b∗,uc∗, sa∗ of the ini-

tial problem DepOpt.

3.3 Efficient structure of input data for DepOpt

The following classes are created in C++: TLinearPieceWiseFunction, TELem, TStation, TBat-

tery, TBus, TTrip, TEBus, and TProblem.

Class TLinearPieceWiseFunction provides representation, input and calculation of piecewise

linear functions. It consists of the following items:

• Number of pieces (segments) n.

• Array a of left endpoints of the segments.

• Array b of right endpoints of the segments.

• Arrays of coefficients k1 and k2 of the linear functions for segments.

Class TELem is the base class for the classes TStation, TBattery, TBus, TTrip, and TEBus.

Class TELem includes the following items: full name, short name, and element index. Full name

used for generating output information of optimization. Short name is used as the reference to

the object of classes TStation, TBattery, TBus, TTrip, and TEBus. Element index is used for

indexing of the objects of these classes.

Additional items of the class TStation for representing charging station c ∈ C are:

• Nominal power Pc.

• Capital cost costcap(c).

• Operating and depreciation cost costope(c).

Additional items of the class TBattery for representing battery b ∈ B are:

• Capital cost costb.
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• Minimal SOC level sb.

• Maximal SOC level s̄b.

• Array of appropriate charging station indices Cb.

• Dimension of Cb.

• Array of pointers to the objects of the class TLinearPieceWiseFunction for fbc(τ).

• Pointer to the object of the class TLinearPieceWiseFunction for Nj(s
low
j ).

Additional items of the class TBus for representing elements of set EB are:

• Array of eligible battery indices Be.

• Dimension of Be.

Additional items of the class TTrip for representing elements of set TR are:

• Departure time t.

• Arrival time t̄.

Additional items of the class TEBus for representing j ∈ J are:

• Pointer to the object of class TBus.

• Array of eligible battery indices Bj.

• Dimension of Bj.

• Array of eligible trip indices TRj.

• Dimension of TRj.

• Array of pointers to the objects of the class TLinearPieceWiseFunction for functions

ϕjbp(s) for each pair (battery, trip), b ∈ Bj, p ∈ TRj.

• Annual number N j of charge/discharge cycles.
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Items of the class TProblem are:

• Array of pointers to the objects of the class TStation for representing the set C.

• Dimension of C.

• Array of pointers to the objects of the class TBattery for representing set B.

• Dimension of B.

• Array of pointers to the objects of the class TBus for representing the set EB.

• Dimension of EB.

• Array of pointers to the objects of the class TTrip for representing the set TR.

• Dimension of TR.

• Array of pointers to the objects of the class TEBus for representing the set J .

• Dimension of J .

• Arrays of values for representing the function P (t) (ends of periods and shares of power

at the ends of the periods).

• Arrays of values for representing the function ce(t) (ends of the periods and tariffs at the

ends of the periods).

• Arrays of values for representing the function cost(pD) (powers supplied and costs of the

power).

It should be noted that all the dimensions are defined dynamically at the stage of the data

input. Elements of the sets (arrays) are indexed starting with 0 in the order of their input. An

access to the element of a set is performed by using its index.

Two formats of the input files are implemented. One of them is the JSON format and

another is the simple text.
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3.4 Format JSON of input files for DepOpt

If the JSON format is used for the input data, then the following files must be prepared:

stations.json, batteries.json, fbatteries.json, fcbatteries.json, buses.json, routes.json, trips.json,

fleet.json, febuses.json, fpower.json.

File stations.json describes the set C and defines values of the following parameters: fn c

(full name of the charging station), sn c (short name of the charging station), po c (nominal

power poc),cc cap c (capital cost cccapc ) and cc ope c (operating and depreciation cost ccopec ).

{ ”C”: [{

”fn c”: ”Charging station”,

”sn c”: ”CS”,

”po c”: 200,

”cc cap c”: 8590,

”cc ope c”: 5000

}

]}

File batteries.json describes the set B and defines values of the following parameters:

fn bat (full name of the battery), sn bat (short name of battery), smin bat (minimal SOC

level),smax bat (maximal SOC level), costb bat (cost), C bat (short names of the eligible charg-

ing stations), and chr bat (charging rates of the eligible charging stations). For example:

{ ”B”: [{

”fn bat”: ”Battery 1”,

”sn bat”: ”B1”,

”smin bat”: 94.05,

”smax bat”: 470.25,

”costb bat”: 202206,

”C bat”: [”CS”],

”chr bat”: [188.1]

}

]}
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The following parameters are defined in the file fbatteries.json: sn bat (short name of the

battery b) and functions fbc(τ) for each eligible charging station c from Cb. Functions are

defined by a 1, b 1, k1 1, k2 1, . . . , a n, b n,k1 n,k2 n where n is the number of eligible

charging stations (|Cb|). Here a i is the array of left endpoints of the segments of the function

for ith charging station from Cb, b i is the array of the right endpoints of the segments of the

function for ith charging station from Cb, k1 i is the array of the coefficients k1 of the function

for ith charging station from Cb, and k2 i is the array of the coefficients k2 of the function for

ith charging station from Cb. For example:

{ ”BF”: [{

”sn bat”: ”B1”,

”a 1”: [0],

”b 1”: [2],

”k1 1”: [188.1],

”k2 1”: [94.05]

}

]}

The following parameters are defined in the file fcatteries.json: sn bat (short name of the bat-

tery) and function Nb(b
low
b ). The function is defined by soc bat (discharge levels) and ncycl bat

(maximal numbers of charge/discharge cycles). For example:

{ ”CBF”: [{

”sn bat”: ”B1”,

”soc bat”: [47.03,94.1,141.1,188.1,235.1,282.2,329.2,376.2,423.2,470.25],

”ncycl bat”: [450000,150000,50000,24000,14000,7000,4400,3000,2300,1900]

}

]}

File buses.json describes the set EB and defines: fn b (full name of the e-bus type), sn c

(short name of the e-bus type), and B b (short names of the eligible batteries). For example:

{ ”EB”: [{

”fn b”: ”Vitovt Max Electro E433”,

”sn b”: ”E433”,
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”B b”: [”B1”]

}

]}

File routes.json describes the set R and defines values of the parameters fn r (full name of

the route), sn r (short name of the route), and l r (the total length of the route). For example:

{ ”R”: [{

”fn r”: ”Railway Station - DS Viasnjanka”,

”sn r”: ”A1”,

”l r”: 9

}

]}

File trips.json describes the set TR and defines values of the parameters fn t (full name of

the trip), sn t (short name of the trip), dep t (departure time), arv t (arrival time) and R t

(short names of the routes). For example:

{ ”T”: [{

”fn t”: ”Trip 1”,

”sn t”: ”T1”,

”dep t”: 5.13,

”arv t”: 22.44,

”R t”: [”T43”]

}

]}

File fleet.json describes the set J and defines values of the parameters fn j (full name of

the e-bus), sn j (short name of the e-bus), sn b j (short name of the e-bus type), Nc j (annual

number of charge/discharge cycles), B j (short names of the eligible batteries) and TR j (short

names of the trips). For example:

{ ”J”: [{

”fn j”: ”2816”,

”sn j”: ”2816”,

”sn b j”: ”E433”,
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”Nc j”: 350,

”B j”: [”B1”],

”TR j”: [”T1”]

}

]}

The following parameters are defined in the file febuses.json: sn j (short name of the e-bus)

and functions ϕµbp(s) for each pair (battery b ∈ Bj, trip p ∈ TRj). The functions are defined by

a 1 1, b 1 1, k1 1 1, k2 1 1, . . . , a 1 n2, b 1 n2, k1 1 n2, k2 1 n2,a 2 1, b 2 1, k1 2 1, k2 2 1,

. . . , a 2 n2, b 2 n2, k1 2 n2, k2 2 n2,. . . ,a n1 n2, b n1 n2, k1 n1 n2, k2 n1 n2 where n1 is the

number of eligible batteries in Bj and n1 is the number of served trips in TRj. Here a i l is

the array of the left endpoints of the segments of the function for ith battery from Bj and lth

trip from TRj, b i l is the array of the right endpoints of the segments of the function for ith

battery from Bj and lth trip from TRj, k1 i l is the array of the coefficients k1 of the function

for ith battery from Bj and lth trip from TRj, and k2 i l is the array of the coefficients k2 oof

the function for ith battery from Bj and lth trip from TRj. For example:

{ ”FJ”: [{

”sn eb”: ”2816”,

”a 1 1”: [94.05],

”b 1 1”: [470.25],

”k1 1 1”: [1],

”k2 1 1”: [-376.2]

}

]}

File fpower.json includes definitions of functions P (t), ce(t) and cost(pD): T p (endpoints of

the periods for P (t)), F p (shares of the power at the endpoints of the periods), T c (endpoints

of the periods for ce(t)), F c (tariffs at the endpoints of the periods), Pd (powers supplied), Cpd

(costs of the power). For example:

{

”T p”: [5,12,20,24],

”F p”: [1,1,1,1],
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”T c”: [5,12,20,24],

”F c”: [0.065,0.065,0.065,0.065],

”Pd”: [200,400,600,800],

”Cpd”: [2000,4000,6000,8000]

}

3.5 Text format of input files for DepOpt

If the input data are prepared in the text format, then the following files must be created:

stations.txt, batteries.txt, fbatteries.txt, fcbatteries.txt, buses.txt, trips.txt, fleet.txt, febuses.txt,

fpower.txt. Each file can include comments. They must start with the symbols // and be

placed at the top of file. The main body of the file starts with a new line immediately after the

comments. Values in the rows are separated by commas.

File stations.txt consists of one row for each element of the set C. Each row contains: full

name of the charging station, short name of the charging station, nominal power, capital cost,

operating and depreciation cost. For example: Charging station 1, CS1, 200, 250000, 5000.

File batteries.txt consists of three rows for each element of the set B. The first row contains:

full name of the battery, short name of the battery, minimal SOC level, maximal SOC level,

cost of the battery. The second and third rows contain short names and charging rates of the

eligible charging stations for the battery, respectively. For example, row 1: Battery 1, B1,

94.05, 470.25, 202206, row 2: CS1, row 3: 188.1.

File fbatteries.txt consists of the data for each element of the set B. The first row contains

short name of the battery. The next 4 · |Cb| rows consist of the data for the functions fbc(τ) for

each eligible charging station c (first two rows specify left a and right b endpoints respectively

of charging time segments, the last two rows define coefficients k1 and k2 of the linear functions

for each of these segments). For example, row 1: B1, row 2: 0, row 3: 2, row 4: 188.1, row 5:

94.05.

File fcbatteries.txt consists of three rows for each element of the set B. The first row contains

short name of the battery. The next two rows consist of the data for the function Nb(b
low
b ) (first

row specifies the discharge levels, second row defines maximal number of charge/discharge

cycles). For example, for Battery 1, row 1: B1, row 2: 47.03, 94.1, 141.1, 188.1, 235.1, 282.2,
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329.2, 376.2, 423.2, 470.25, row 3: 450000, 150000, 50000, 24000, 14000, 7000, 4400, 3000,

2300, 1900.

File buses.txt consists of two rows for each element of the set EB. The first row consists

of full and short names of the e-bus type. The second row contains short names of the eligible

batteries. For example, for e-bus type Vitovt Max Electro E433, row 1: Vitovt Max Electro

E433, E433, row 2: B1.

File routes.txt consists of one row for each element of the set R in the format full name of

the route, short name of the route, total length of the route. For example, for the route DS

Drugnaja - DS Siarova: DS Drugnaja - DS Siarova, T43, 7.

File trips.txt consists of two rows for each element of the set TR. The first row contains

full name of the trip, short name of the trip, departure time and arrival time. The second row

consists of the short names of the served routes. For example, row 1: Trip 1, T1, 5.13, 22.44,

row 2: T43.

File fleet.txt consists of three rows for each element of the set J . The first row contains full

name of the e-bus, short name of the e-bus, short name of the e-bus type, annual number of its

battery charge/discharge cycles. The second row includes short names of the eligible batteries.

The third row contains short names of the eligible trips. For example, row 1: 2816, 2816, E433,

350, row 2: B1, row 3: T1.

File febuses.txt consists of the data for each element of the set J . The first row contains

short name of the e-bus. The next rows include data for the functions ϕjbp(s) (4 rows) for each

pair (battery b ∈ Bj, trip p ∈ TRj). It is assumed that trip is changed first. First two rows

specify arrays a and b of left and right endpoints of its battery SOC level segments. The next

two rows define arrays k1 and k2 of function coefficients). For example, row 1: 2816, row 2:

94.05, row 3: 470.25, row 4: 1, row 5: -376.2.

File fpower.txt consists of 6 rows and defines functions P (t), ce(t) and cost(pD). The first

two rows contain endpoints of the periods and shares of supplied power at the endpoints of

these periods. The next two rows include endpoints of the periods and fixed power rates in

these periods. The last two rows include powers supplied and costs of the power. For example,

row 1: 5, 12, 20, 24, row 2: 1, 0.85, 0.85, 1, row 3: 5, 12, 20, 24, row 4: 0.065, 0.065, 0.065,

0.065, row 5: 200, 400, 600, 800, row 6: 2000, 4000, 6000, 8000.
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3.6 Efficient structure of output data for DepOpt

The following items of the class TProblem are used for representing the results of the optimiza-

tion.

• Maximal power supplied to the depot p∗D.

• Type of charging station c∗.

• Number of charging stations K∗.

• Array of types of battery for each e-bus b∗j , j ∈ J .

• Array of variables x obtained from the Open Source MIP solver LpSolve.

The following data is derived from this output.

• The optimal cost Φ∗.

• The total unused daily charging time resource in the depot t̄ch.

• The share of the used daily resource of charging time in the depot Ψch.

• Arrays of SOC levels sdpj for each e-bus.

• Arrays of SOC levels sapj for each e-bus.

• Arrays of times uapj for each e-bus.

• Arrays of charging time ucpj for each e-bus.

• Arrays of vectors of charging times ucj for each e-bus.

• Arrays of charging times δij for each e-bus.

• Arrays of unused charging time resources tchi for each time interval [ti, ti+1].
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3.7 Minsk case of DepOpt

The experimental software implementing decomposition algorithms was used to solve instances

of the problem DepOpt for a set of public transport routes in the city of Minsk. In these

instances, slow-charging infrastructure of a single depot was considered. One of these instances

is described below.

The name of the depot is V aneeva (V ). The power pD supplied to the depot V can take

the following values: 200, 400, 600, 800 kW. The annual cost cost(pD) of the electric power

supplied to the depot V is 2000, 4000, 6000, and 8000 e, respectively.

The remaining input data on e-buses and served routes are given in Tables 7 and 8. Passen-

ger capacity, range of the single-charge drive, cost and time are measured in persons, kilometers,

euros (e) and hours, respectively.

Table 7: E-bus types. Input data.

No Name Battery Max. char. Capacity Route Single-charge
cap.(kWh) time τmaxj (h) (pass.) range (km)

1 Vitovt Max Electro E433 470.25 2 123 1-3 220

Table 8: Routes.

ID Name Return route Total Duration Number
(depot) length of stops

3(V ) T43 (Druz, Siar) 14 50 26

Depot V is equipped with the slow-charging stations of the same type c with output power

Pc = 200 kW. Thus, C={c}. Capital cost of one charging station c is 171806 e. Given the

estimated period of operation of the station as 20 years, its annual capital cost is costcap(c) =

8590 e. Annual operating and depreciation cost of one charging station c is costope(c) = 5000

e. The set of routes is R = {3}.

The set of e-buses serving the three routes is J = {1, 2, 3, 4}. All the e-buses are of the

same type E433, so EB = {E433}. Maximal range of any e-bus is 220 km.

All the sets Bj = {b}, j = 1, 2, 3, 4, where b is the only battery option with 188 LFP cells

and total capacity of 470.25kWh. Cost costb of the battery option b used in all four e-buses
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is 202206 e. Minimal and maximal SOC levels of the battery b for e-bus j are the same:

sj = 94.05 and s̄j = 470.25, respectively, j = 1, 2, 3, 4.

The time moments of departure from/ arrival to the depot for the e-buses are:

1: [5.217, 22.73]; 2: [5.45, 12.8], [15.93, 22.27]; 3: [5.75, 23.13]; 4: .[6.00, 22.45]. Here

j : specifies e-bus j, j = 1, 2, 3, 4.

Functions of charge loss of the e-buses on the routes are as follows:

ϕ11(s) = s − 376.2; ϕ21(s) = s − 160.74; ϕ22(s) = s − 136.8; ϕ31(s) = s − 376.2;

ϕ41(s) = s− 352.26.

The battery charge recovery functions are:

fjc(τ) = 94.05 + 188.1τ for τ ∈ [0, 2], j = 1, 2, 3, 4. f ′jc = 188.1.

The number of charge/discharge cycles of the battery b over its entire life, depending of its

depth of discharge, is presented in Table 9.

Table 9: Number of battery charge/discharge cycles as a function of depth of its discharge

No Depth of Number Reverse
discharge %/slowb of cycles value

1 10/423.2 450000 2.222E-6
2 15/400 280000 3.57E-6
3 20/376.2 150000 6.6666E-6
4 25/352.7 80000 1.255E-5
5 30/329.2 50000 2E-5
6 35/305.7 35000 2.857E-5
7 40/282.2 24000 4.16666E-5
8 45/258.6 18000 5.55555E-5
9 50/235.1 14000 7.142857E-5
10 55/211.6 9200 0.0001087
11 60/188.1 7000 0.0001428
12 65/164.6 5600 0.00017857
13 70/141.1 4400 0.00022727
14 75/117.6 3500 0.00028571
15 80/94.1 3000 0.00033333
16 85/70.5 2600 0.0003846
17 90/47.03 2300 0.00043478
18 95/23.51 2100 0.00047619
19 100/0 1900 0.0005263

The number of annual charge/discharge cycles of the e-buses are: N j = 350, j = 1, 3, 4,

51



N2 = 700.

The electric power rate is 6.5 e per 100 kWh.

Function P (t, pD) = pD for t ∈ [0, 24].

Solution.

One solution is found. It is:

p∗D = 200; c∗ = c; K∗ = 1; b∗j = b, j = 1, 2, 3, 4; sa1∗
1 = 94.05; sa1∗

2 = 309.51;

sa2∗
2 = 333.45; sa∗3 = 94.05; sa∗4 = 117.99; uc1∗1 = 2.0; uc1∗2 = 0.85454; uc2∗2 = 0.72727;

uc1∗3 = 2.0; uc1∗4 = 1.87273.

The total charging time of all e-buses of the route T43 is 7.45454 hours.

The optimal daily cost Φ∗ = 329.08 e.

The share of total unused daily charging time resource in the depot t
ch

= 0.689.

The share of the used daily resource of charging time in the depot Ψch = 0.311.

4 Efficient algorithm and data structure for OptSched

Recall that the problem OptSched is to distribute departures of buses of the same type as-

signed to the same route as uniform as possible over the departures of all buses serving this

route in the decisive time period. The timetables which address this objective are called bal-

anced. It is assumed that buses of different types have different passenger capacities. Therefore,

a balanced timetable ensures a uniform allocation of bus capacities over time in the decisive

time period of the same route.

Denote V =
∑n

b=1 vb and sb = vb/V , b = 1, . . . , n. The value of V is equal to the number

of buses operating on the same route in the decisive time period. According to the balanced

timetable objective, the number of buses of type b departed in the first k traffic intervals must

be kept as close to sbk as possible for b = 1, . . . , n. Introduce non-negative integer variables xbk

representing the number of buses of type b departed in the first k traffic intervals, b = 1, . . . , n,

k = 1, . . . , V . Define xb0 = 0, b = 1, . . . , n. Denote by x matrix with entries xbk. In the previous

Deliverable, we have selected the following mathematical model for the problem OptSched.

Problem OptSched-Max : min
x

max
1≤k≤V,1≤b≤n

|xbk − sbk|, subject to
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n∑
b=1

xbk = k, k = 1, . . . , V, (50)

0 ≤ xbk − xb(k−1), b = 1, . . . , n, k = 1, . . . , V, (51)

xb0 = 0, b = 1, . . . , n, (52)

xbV = vb, b = 1, . . . , n, (53)

xbk ∈ Z0, b = 1, . . . , n, k = 1, . . . , V. (54)

4.1 Algorithm for OptSched

We employ optimal O(V log V ) time algorithm of Steiner and Yeomans [7], denoted as SY,

to solve the problem OptSched. This algorithm can be described as follows. Consider the

following auxiliary decision problem.

Problem OptSched-Max(M) : max
1≤k≤V,1≤b≤n

|xbk − sbk| ≤M, subject to (50)-(54),

where M satisfies V−vmax

V
≤ M ≤ V−1

V
, vmax = maxb{vb}. This problem is equivalent to

the scheduling problem 1|rj, d̄j, pj = 1|·, in which there is a single machine (route), unit-

time (pj = 1) jobs (buses with unit-time traffic interval) of a set N , each job j has a release

date rj and a deadline d̄j, no two jobs can be processed concurrently, and each job j has to

be processed between rj and d̄j. For any instance of OptSched-Max(M), an equivalent

instance of 1|rj, d̄j, pj = 1|· is constructed by setting N = {(b, h) | b = 1, . . . , n, h = 1, . . . , vb},

r(b,h) = dh−M
sb
e and d̄(b,h) = bh−1+M

sb
+ 1c, (b, h) ∈ N , where (b, h) is a bus of type b numbered h.

The problem 1|rj, d̄j, pj = 1|· is solved by applying the following rule formulated by Horn [3]:

In any time interval k, k = 1, . . . , V , schedule an available unassigned job j (rj ≤ k ≤ d̄j) with

the smallest deadline. If no job is available for k ∈ {1, . . . , V }, then 1|rj, d̄j, pj = 1|·, and hence,

corresponding OptSched-Max(M), has no solution.

Algorithm SY.

Step 1. (Initialization) Set L = V−vmax

V
and U = V−1

V
. We have L ≤ M∗ ≤ U . Solve the

problem OptSched-Max(L). If a feasible solution of this problem is found, then it

is optimal for OptSched-Max, stop. Assume that it is not found. Solve the problem

OptSched2-Max(U). Observe that |M1 − M2| ≥ 1
V 2 for any two distinct objective

functions values M1 and M2 of OptSched-Max.
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Step 2. (Bisection search) If U − L < 1
V 2 , then stop: a feasible solution for the prob-

lem OptSched-Max(U) is optimal for OptSched-Max. Else, solve the problem

OptSched-Max((L+ U)/2). If a feasible solution of this problem is found, then re-set

U := (L+ U)/2 and repeat Step 2. Else, re-set L := (L+ U)/2 and repeat Step 2.

The number of iterations of the bisection search in Step 2 is O(log V ).

4.2 Computer implementation, efficient structure of input and out-
put data and Minsk case of OptSched

Algorithm SY is implemented in C++ in two ways: as function Schedule of class TRoute and as

a standalone program. In the first case, the input and output data of the problem OptSched

are part of the input and output data of the problem Opt, which includes OptSched as a

subproblem.

In the second case the input consists of the short names of vehicle types (e-bus and con-

ventional vehicle types) and the numbers vb of vehicles of each type b, b = 1, . . . , n, serving the

considered route. Recall that V =
∑n

b=1 vb.

Two formats of the input data are implemented: JSON format and simple text. Type of

the format is specified in the configuration file sched.ini by the parameter json, where json = 1

if input data are in the JSON format and json = 0 if they are in the text format. In the first

case, the file schedin.json should be prepared in which values for names sn b (short names of

the e-bus and conventional vehicle types) and nv b (number of vehicles of type b) are to be

defined. For example:

{

sn b: [MAZ103, E433],

nv b: [3, 8]

}

In the second case, the file schedin.txt should be prepared which consists of two rows. The

first row includes short names of the e-bus and conventional vehicle types. The second row

contains number of vehicles of each type. For example:

MAZ103, E433

3, 8
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The output data is a sequence (t1, . . . , tV ), where ti is the type of the vehicle departed i-th

among all V vehicles in the decisive time period of the same route. Two formats of the output

data are implemented: JSON format and simple text.

Object t is defined in the file sched.json. It consists of the short names of e-bus and

conventional vehicle types. For example:

{t: [

E433, MAZ103, E433, E433, E433, MAZ103, E433, E433, E433, MAZ103, E433]

}

The obtained solution, which is the sequence of vehicle types in the departure order, is placed

into the file sched.out. It consists of the sequence of short names of e-bus and conventional

vehicle types. For example:

E433 MAZ103 E433 E433 E433 MAZ103 E433 E433 E433 MAZ103 E433

The experimental software implementing algorithm SY was used to solve a real-life instance

of the city of Minsk described in Section 2.6. The solution obtained is given in Table 10.

Table 10: Minsk case. Sequences of vehicle types

Routes Sequence of bus types

A1 (E433,E433,E433,E433,E433,E433,E433,E433)
T59 (E433,E433,E433,E433,T420,E433,E433,E433,E433)
T43 (E433,E433,E420,E433,E433,E433)
T20 (E433,E433,T420,E433,E433,E420,E433,E433)
T40 (E433,T333,E433,T420,E433,E433,T333,E433)

5 Conclusion

In this report, efficient algorithms and data structures are described for the problems Opt,

DepOpt and OptSched, which were analyzed and formulated in the previous Deliverable.

Computer experiments with the algorithms demonstrated that they are able to solve real-sized

instances of these problems in few minutes on a standard PC. The proposed methods can be

used as decision support tools for planning process of conversion of the conventional bus fleet

to a fully electric bus fleet.

55



6 Total Cost of Ownership model

Total Cost of Ownership (TCO) analysis helps to investigate all costs of the owner-ship of a

product during its useful life [9] (Bickert and Kuckshinrichs, 2011). TCO is considered also as

a tool and philosophy, which is aimed at the identification of the true costs of buying goods or

services [14] (Hagman et al., 2016). Two ways of TCO analysis can be identified: a consumer-

oriented approach and society-oriented approach. Consumer-oriented TCO analysis is focused

on the consumers point of view, so include only such costs which are perceived and borne by

consumers [10], [11] (Ellram, 1999, 1995; [15] Lebeau et al., 2014; [16] Letmathe and Suares,

2017). Society-oriented TCO analysis has much broader scope and considers external costs

[15] (Lebeau et al., 2014). The developed TCO model is an socially-oriented, dynamic model

of TCO. By design, this model is to serve an ex-ante assessment of the costs of the planned

investment. The developed dynamic TCO model provides different ways of financing of the

investment, as well as its implementation in parts over various periods of time.

6.1 Static TCO model

In the static TCO model (see 2) the following assumptions were made regarding the calculation

and analysis of the bus fleet conversion process: a) One-time purchase of the necessary number

of buses immediately and construc-tion of the infrastructure in an amount ensuring full service

of the bus battery charging needs, b) Different financing models for the purchase of buses and

battery charging infra-structure: i) Self-financing, ii) Self-financing and subsidy, iii) Loan for

own funds, c) fixed values of all characteristics/variables in subsequent years of the analysis

period, including annual bus operation, prices of electricity and its supply, bus prices and

infrastructure construction costs, d) Cost allocation for only one stakeholder/beneficiary of the

investment.

6.2 Socially-oriented dynamic TCO model

The presented TCO model is a dynamic model and the development of the static economic

model. The dynamics of the TCO model is primarily to take into account the following phe-

nomena overtime associated with the period of calculations and analyzes of bus fleet conversion
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Figure 2: General algorithm of socially-oriented model of TCO (static approach).

processes: a) Purchase of the necessary number of buses immediately, b) Purchase of buses

in tranches from time to time, c) Construction of infrastructure in an amount to provide full

service to the needs of bus battery charging, d) Expansion of infrastructure as the growing

needs arising from the purchase of buses in tranches from time to time, e) Different financing

models for the purchase of buses for each of options a) and b): i) Self-financing, ii) Self-financing

and subsidy, iii) Loan for own funds, iv) Leasing, f) Different financing models for bus battery

charging infrastructure for each of op-tions c) and d): i) Self-financing, ii) Self-financing and

subsidy, iii) Loan for own funds, iv) Leasing, g) Change in the values of the following char-

acteristics/variables in subsequent years of the analysis period: i) Annual bus operation, ii)

The price of electricity and the price of the supply of this energy, iii) Bus price in subsequent

tranches, iv) Price of infrastructure in subsequent tranches, h) Different cost-sharing structure

for individual stakeholders/investment beneficiar-ies: i) Operator, ii) Transport organizer, iii)

Public transport authority / local government.

The general algorithm of socially-oriented dynamic model of TCO shows 3.
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Figure 3: General algorithm of socially-oriented model of TCO (dynamic approach).

6.3 Dynamic vs static model

The differences between the current dynamic TCO model and its static version are primarily

that: I) The purchase of the required number of buses in the static model was carried out in

full, i.e. without tranches. Whereas in the dynamic model, variants a) and b) were additionally

included, II) The purchase and construction of the needed bus battery charging infrastructure

in the static model were carried out in its entirety, i.e. without tranches. Whereas in the

dynamic model, variants c) and d) were additionally included, III) In the dynamic model,

combinations of variants for the purchase of buses and variants for the construction of the

infrastructure are additionally possible, e.g.: i. a) & c); ii. a) & d), however, there may be

limited possibilities of bus coverage due to the phased construction of the infrastructure (in

tranches), iii. b) & c), however, it is recommended to adapt the needs of servicing a specific

number of buses in subsequent tranches to the resources of the battery charging infrastructure

- to optimally use the resources of the battery charging infra-structure to the changing needs

of bus service related to their number in subsequent tranches, iv. b) & d), however, it is
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recommended to adapt the required amount of infrastructure in subsequent tranches to the

assumed number of buses in subsequent tranches - to optimally use the resources of the battery

charging infrastructure for the needs of bus service, IV) In the dynamic model, combinations

of variants for financing bus purchase mod-els are additionally possible e) with models for

financing bus battery charging infrastructure f) for specific combinations of variants regarding

bus purchase and infrastructure construction - point III. V) In the dynamic model, additional

values of specific characteristics/variables can be changed in subsequent years of the analysis

period, including: i. The annual work operating the bus, ii. The price of electricity and the

price of the supply of this energy, iii. The price of the bus in subsequent tranches, iv. Price

of infrastructure in subsequent tranches, VI) In the dynamic model, additional variants of the

distribution of TCO costs into various stakeholders/beneficiaries of the investment related to

the purchase of buses and the infrastructure of electric battery charging are possible. VII) In

the dynamic model, in addition to the static model, all of the above-mentioned data change

possibilities are possible at any time during the analysis - the variables are time-dependent.

The developed TCO model covers all major cost categories associated with the acquisition

of an electric bus fleet and relevant infrastructure. It also includes the cost of depreciation,

which is the cost of market value loss of buses over time as the difference between their bus

purchase price and the resell price/liquidation value. Depreciation is one of the largest costs

in the structure of the costs of transport. The estimation of present worth of costs that will

take place in future years is made with the present value (PV), as it is a method widely used in

business and economics to analyze cash flows at different time periods. PV reflects the current

value of future cash flows. To receive the present value of money the future value of money

needs to be discounted. The present worth is usually less or equal to future worth ([15] Lebeau

et al., 2014; [17] Nurhadi et al., 2014).

The Total Cost of Ownership was calculated using the following equation:

TCO = (PVbus − PV Lliq bus) + PV OCbus + PVinfr + PV Eexter (1)

where: TCO – total cost of ownership [PLN, EUR], PVbus – present value of the acquisition

costs of electric buses [PLN, EUR], PV OCbus – present value of buses operating costs [PLN,

EUR], PVinfr – present value of the infrastructure [PLN, EUR], PV Eexter – present value of

59



the external costs [PLN, EUR], PV Lliq bus – present value of the proceeds of liquidation [PLN,

EUR]

6.4 Electric Buses Acquisition Costs

Present value of the acquisition costs of electric buses is a sum of discounted nominal acquisition

costs of each purchased bus:

PVbus =
n∑
i=1

DACbus nomi
(2)

where: DACbus nomi
– discounted nominal acquisition costs of i-th bus [EUR], i – number

of consecutive bus (i-th bus number), n – number of purchased buses.

Discounted nominal acquisition costs of i-th bus is carried out by the equation:

DACbus nomi
=

Mac∑
mac

(ACbus nomi

1

(1 + ibus)
mac

) (3)

where: ACbus nomi
– nominal acquisi-tion costs of bus [EUR], ibus – market interest rate [-],

Mac – investment term [years], i – number of consecutive bus (i-th bus number) , mac – time

with bus acquisition.

Nominal acquisition costs of bus are calculated as sum of battery nominal costs, bus costs and

costs of double-layer capacitors:

ACbus nomi
= (BatcapBatunitCost

) +Buscost + Capaccost (4)

where: ACbus nomi
– nominal acquisi-tion costs of bus [EUR], Batcap – battery capacity

[kWh], BatunitCost
– cost of battery unit ca-pacity [EUR/kWh], Buscost – bus costs [EUR],

Capaccost – costs of double-layer capacitors [EUR].

The economic, dynamic model of TCO provides several options of financing of in-vestment,

taking into account different possibilities of combining own resources (self-financing), bank

credit, subsidies and leasing:

ACbus nomi
= ACbus cred i

+ Busselfi + Bussubi + V bus initi (5)
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where: ACbus nomi
– nominal acquisition costs of bus [EUR], ACbus credi – amount of credit

for the bus purchase [EUR], Busselfi – costs of bus acquisition (self-financing) [EUR], Bussubi

– subsidies for bus [EUR], V bus initi – value of the leased bus without initial fees.

Thus, various combinations of purchase financing sources are possible. In addition, according to

the developed model different batches of purchased buses can be financed in different ways. In

addition, the model takes into account that cash flows resulting from the purchase of a bus fleet

can take place in different time periods, i.e. that the fleet is purchased in batches in subsequent

years / periods (which is not a rare situation taking into account the specific procedures for this

type of investment resulting from public procurement law). The subsidy can also take place in

different time periods and can be paid in tranches (which happens quite often, especially for

projects financed from European Union funds, when the payment is delayed after presentation

of relevant accounting documents, etc.).

Each of these cash flows (CF) is discounted in time with a discount rate adequate to the

period in which a given cash flow occurs, and Present Value is the sum of these discounted

flows in time. Taking into consideration diversified funding structure of bus fleet acquisition in

time the present value of the acquisition costs of electric buses is carried out using the following

equation:

PVbus =
n∑
i=1

(DACbus credi +DACbus selfi−DBussubi +DBusleasi + DACbat2i + DBatDi) (6)

where: DACbus cred – discounted annual instalments for bus acquisition with credit [EUR],

DACbus selfi– discounted costs of bus acquisition (self-financing) [EUR], DBussubi – discounted

annual subsidies for bus acquisition [EUR], DBusleasi – discounted annual bus lease instalments

[EUR], DACbat2i – discounted costs of spare battery for i-th bus[EUR], DBatDi – discounted

costs of battery disposal for i-th bus [EUR], i – number of consecutive bus (i-th bus number),

n – number of purchased buses.

The developed model of TCO includes two types of bank credit: i) Credit with equal install-

ments (annuities), ii) Credit with decreasing installments (installments with fixed capital part).
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6.5 Credit with equal installments (annuities)

The structure of installments is not the same for each period. In the initial periods, the share

of interest is larger than the share of capital. Over time, the share of interest decreases and the

share of capital increases. The calculation of nominal value of annual annuity is carried out by

the equation:

ACbus cred anni
= ACbus cred

sbus(1 + sbus)
nbus

(1 + sbus)
nbus − 1

(7)

where: ACbus credi – amount of credit for the bus purchase [EUR], nbus – number of pay-

ments/annuities, sbus – credit interest rate (bus) [-].

6.6 Credit with decreasing installments (installments with fixed
capital part)

In case of credit with decreasing installments each installment is with fixed capital part. Nom-

inal value of annual credit installment for the installment number ninst can be calculated using

the following equation:

ACbuscredinst i
(ninst) =

ACbus credi
nbus

[1 + (nbus − ninst + 1) sbus] (8)

where: ACbuscredinst i
– amount of credit for the bus purchase [EUR], nbus – number of

payments/annuities, sbus – credit interest rate (bus) [-], ninst- number of credit installment.

TCO analysis is carried out annually, so if installments payments are monthly, then in order

to receive the nominal annual value, the monthly installments of a given year should be added

together. There is need to decide for which type of installments the analysis will be carried out.

Usually bank credit with decreasing installments is cheaper than the credit with decreasing

installments. In the next step to calculate the PV, installments are discount-ed with a discount

rate adequate for the year in which such cash flows take place (credit repayments) and then

Present Value is the sum of these discounted flows in time:

DACbuscredi =

Mbus∑
mbus

(ACbus cred ann i
1

(1 + ibus)
mbus

) (9)
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or

DACbuscredi =

Mbus∑
mbus

(ACbus cred inst i
1

(1 + ibus)
mbus

) (10)

where: DACbus cred – discounted annual annuities for bus acquisition with credit [EUR],

ACbus cred ann i
– nominal value of annual credit installment (annuity) [EUR], ACbus cred insti-

nominal value of annual credit installment for the rate number ninst, ibus – market interest rate

[-], Mbus – repayment term [years], i – number of consecutive bus (i-th bus number) , mbus –

time with credit installment for bus acquisition.

The investment can be financed from own resources, leasing or co-financed by a subsidy as

well. In such case each cash flow are discounted with a discount rate adequate for the year in

which such cash flows take place:

DACbus selfi =

Mself∑
mself

(Busselfi
1

(1 + ibus)
mself

) (11)

where: DACbus selfi– discounted costs of bus acquisition (self-financing) [EUR], Busselfi –

costs of bus acquisition (self-financing) [EUR], mself – time with payment (self-financing), Mself

– investment term (self-financing).

DBussubi =

Msub∑
msub

(Bussubi
1

(1 + ibus)
msub

) (12)

where: DBussubi – discounted subsidies for bus acquisition [EUR], msub – time with subsidy,

Msub – subsidized investment term, Bussubi – subsidies for bus [EUR].

DBusleasi =

Mleas∑
mleas

(ACbusleasi
1

(1 + ibus)
mleas

) (13)

where: DBusleasi– discounted annual annuities for bus acquisition with credit [EUR],

ACbus leas i
– nominal value of annual leas installment [EUR], ibus – market interest rate [-],

Mleas – bus leasing term [years], i – number of consecutive bus (i-th bus number), mleas – time

with bus lease installments.

The nominal value of annual leas installment (ACbus leas i
) may be the value entered by the
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user for example on the basis of offers received or calculated on the basis of the equation for

an equal lease installment:

ACbus leas i
=
V bus initi ibusleas(1 + ibusleas)

nlease − V bus puri ibusleas
(1 + ibusleas)

nlease − 1
(14)

where: ACbus leas i
– nominal value of annual leas installment [EUR], ibusleas – lease interest

rate [-], nlease – number of lease installments, V bus initi – value of the leased bus without

initial fees, V bus puri – value of the leased bus purchase.

TCO analysis considers also costs of spare battery and costs of used battery disposal. Such

costs are discounted with a discount rate adequate for the year in which such cash flows take

place as follows:

DACbat2i = ACbat2self (t = Batlife)
1

(1 + ibat2 )Batlife
(15)

where: DACbat2 – discounted costs of spare battery [EUR], ACbat2 self (t = Batlife) – ac-

quisition costs of spare battery [EUR] after period t equal lifetime of the bus battery bat life,

ibat2 – market interest rate for bat2 [-], Batlife – lifetime of the bus battery [years].

DBatDi = BatDi (t = Batlife)
1

(1 + ibat )Batlife
(16)

where: DBatDi – discounted costs of the battery disposal for i-th bus [EUR],

BatDi (t = Batlife) – costs of battery disposal for i-th bus [EUR] after period t equal life-

time of the bus battery bat life, ibat – market interest rate for bat1 [-], Batlife – lifetime of the

bus battery [years].

6.7 Operating Costs

The analysis of operating costs is conducted globally, i.e. for the entire fleet operating in a given

year. This model takes into account not only the costs of future maintenance of buses planned

to be bought. As part of the cash flow in the year ”0” – so the year of conducting analysis and

making decisions, it is possible to include operating costs of the fleet that the investor already
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has and forecast the value of these costs in the future as future cash flows, so discounting them

with a discount rate appropriate for a given year using the following equation:

PV OCbus =

Buslife∑
mOC

(OCbus
1

(1 + ibus)
moc

) (17)

where: OCbus– annual buses operating costs [EUR], ibus – market interest rate for bus [-],

mOC – time with operating costs, Buslife – bus lifetime [years].

Nominal value of annual operating costs of electric buses is calculated as a sum of annual energy

costs, maintenance costs, insurance, costs, costs of daily energy supply and other costs:

OCbus = OCener +OCmaint +OCinsur +OCener supp + OCother (18)

where: OCbus – annual operating costs of the bus fleet [EUR], OCener – annual energy

costs [EUR], OCmaint – annual maintenance costs [EUR], OCinsur – annual insurance cost

[EUR], OCener supp – annual costs of daily energy supply [EUR], OCother- other annual costs

(for example vehicle tax) [EUR].

Annual costs of the daily energy supply are calculated using the following equation:

OCener supp = Busoper annEnersupp cost r (19)

where: OCener supp – annual costs of the daily energy supply [EUR], Busoper ann – annual

transport work [vkm/year], Enersupp cost r– energy supply cost rate [EUR/vkm].

The calculation of annual energy costs is carried out by the equation:

OCener = Busoper ann [Enercons (Enercost − Taxrelief )] (20)

where: OCener – annual energy costs [EUR], Busoper ann – annual transport work [vkm/year],

Enercons – energy consumption [kWh/vkm], Enercost – cost rate of energy [EUR/kWh],

Taxrelief – tax relief [EUR/kWh].

Annual maintenance costs depend on the number of staff service hours and staff service cost

rate as follows:

OCmaint = Workstaff serviceStaffcost r (21)
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where: OCmaint – annual maintenance costs [EUR], Workstaff service – staff service hours

[staff-service-hours/bus], Staffcost r– staff service cost rate [EUR/staff-service-hours].

Other annual costs and annual insurance costs are user input values entered in years such cash

flows take place.

6.8 Infrastructure costs

Infrastructure nominal acquisition costs in a given year include all types of charging infrastruc-

ture and are calculated using the following equation:

ACinfra nomy = ACinfra dep + ACinfra swap + ACinfra panto + ACinfra stop + ACinfra induct (22)

where ACinfra nom – infrastructure nominal acquisition costs [EUR], ACinfra dep – acquisi-

tion costs of depot conductive plug-in charging [EUR], ACinfra swap – acquisition costs of bat-

tery swapping-charging [EUR], ACinfra panto – acquisition costs of pantograph charging [EUR],

ACinfra stop – acquisition costs of on bus-stop charging [EUR], ACinfra induct – acquisition costs

of in-motion inductive charging [EUR],

The calculation of present value of infrastructure is carried out the same way as in previous

cases, so as a sum of discounted nominal infrastructure acquisition costs by the equation:

PVinfra =

Minfra ac∑
minfra ac

(ACinfra nomy

1

(1 + iinfra)
minfra ac ) (23)

where ACinfra nomy - infrastructure nominal acquisition costs (in a given year), iinfra – market

interest rate of infrastructure [-], Minfra ac – repayment term of infrastructure [years], minfra ac-

time with infrastructure acquisition.

Furthermore, the structure of financing the purchase or construction of an appropriate infras-

tructure may be analogous to that for a bus fleet, i.e. various combinations of own funds, credit,

subsidies and leasing as follows:

ACinfra nomy = ACinfra cred + ACinfra self + Infrasub + Vinfra init (24)
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where ACinfra nomy – infra-structure nominal acquisition costs (in a given year), ACinfra cred

– acquisition costs of infrastructure with credit [EUR], ACinfra self - costs of infrastructure ac-

quisition (self-financing) [EUR], Infrasub –subsidies for infrastructure [EUR], Vinfra init – value

of the leased infrastructure without initial fees [EUR],

Including diversified investment funding structure and annual maintenance costs of infrastruc-

ture the present value of infrastructure is calculated using the following equation:

PVinfra = DACinfra cred +DACinfra self −DACinfra sub + DACinfra lease + DMCinfra (25)

where: DACinfra cred – discounted annual installments for infrastructure acquisition with

credit [EUR], DACinfra self – discounted acquisition costs of infrastructure (self-financing)

[EUR],DMCinfra – discounted annual Maintenance Costs of infrastructure [EUR],DACinfra sub

– discounted annual subsidies for infrastructure acquisition [EUR], DACinfra lease- discounted

annual infrastructure lease installments.

Including investment funding from bank credit there is need to decide for which type of install-

ments the analysis will be carried out (annuities or decreasing installments) as follows:

6.9 Credit with equal installments (annuities)

ACinfra cred ann = ACinfra cred
sinfra(1 + sinfra)

ninfra

(1 + sinfra)
ninfra − 1

(26)

where ACinfra cred ann – annual annuity acquisition costs of infrastructure with credit

[EUR], ACinfra cred – acquisition costs of infrastructure with credit [EUR], ninfra – number of

payments/annuities [-], sinfra –credit interest rate (infrastructure) [-],

6.10 Credit with decreasing installments (installments with fixed
capital part)

ACinfracred(ninst) =
ACinfra cred
ninfra

[1 + (ninfra − ninst + 1) sinfra] (27)

where ACinfra cred – acquisition costs of infrastructure with credit [EUR], ninfra – number

of payments/annuities [-], sinfra –credit interest rate (infrastructure) [-], ninst- number of credit

installment.
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In the next step to calculate the PV, installments are discounted with a discount rate adequate

for the year in which such cash flows take place (credit repayments) and then Present Value is

the sum of these discounted flows in time:

DACinfra cred =

Minfra∑
minfra

(ACinfra cred ann
1

(1 + iinfra)
minfra

) (28)

or

DACinfra cred =

Minfra∑
minfra

(ACinfra cred(ninst)
1

(1 + iinfra)
minfra

) (29)

where ACinfra cred ann – nominal value of annual credit installments [EUR], iinfra – market

interest rate of infrastructure [-], Minfra – repayment term of infrastructure [years], minfra-

time with annuity for infrastructure acquisition,

Infrastructure acquisition can be financed from own resources, leasing or co-financed by a

subsidy as well. In such case each cash flow are discounted with a discount rate adequate for

the year in which such cash flows take place:

DACinfra self =

Minfra self∑
minfraself

(ACinfra self
1

(1 + iinfra)
minfra self

) (30)

where: iinfra – market interest rate of infrastructure [-], Minfra self – investment term

(self-financing) [years], minfra self - time with payment from own resources (infrastructure),

ACinfra self - costs of infrastructure acquisition (self-financing) [EUR].

DACinfra sub =

Minfra sub∑
minfra sub

(Infrasub
1

(1 + iinfra)
minfra sub

) (31)

where: Infrasub –subsidies for infrastructure [EUR], iinfra – market interest rate of infras-

tructure [-], Minfra sub – subsidized investment term (infrastructure) [years], minfra sub – time

with subsidy.

DACinfra lease =

Mleas∑
mleas

(ACinfra lease
1

(1 + iinfra)
mleas

) (32)

where: ACinfra lease – nominal value of annual leas installment (infrastructure) [EUR], iinfra

– market interest rate of infrastructure [-], Mleas – infrastructure lease term [years], mleas – time
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with infrastructure lease installments.

The nominal value of annual leas installment (ACinfra lease) may be the value entered by the

user for example on the basis of offers received or calculated on the basis of the equation for

an equal lease installment:

ACinfra lease =
Vinfra init iinfra leas(1 + iinfra leas)

nlease − Vinfra purch iinfra leas
(1 + iinfra leas)

nlease − 1
(33)

where: iinfra lease– lease interest rate [-], nlease – number of lease installments, Vinfra init –

value of the leased infrastructure without initial fees, Vinfra purch– value of the leased infrastruc-

ture purchase.

Furthermore, annual maintenance costs of infrastructure are discounted with a dis-count rate

adequate for the year in which such cash flows take place (credit repayments) and then Present

Value is the sum of these discounted flows in time:

MCtotal = MCinfra dep +MCinfra swap +MCinfra panto +MCinfra stop +MCinfra induct +MCother

DMCinfra =

Infralife∑
minfralife

MCtotal
1

(1 + iinfra)
minfra

(34)

where: DMCinfra – discounted annual Maintenance Costs of infrastructure [EUR],

MCinfra dep – annual maintenance costs of depot conductive plug-in charging [EUR],

MCinfra swap – annual maintenance costs of battery swapping-charging [EUR], MCinfra panto

– annual maintenance costs of pantograph charging [EUR], MCinfra stop – annual maintenance

costs of on bus-stop charging [EUR], MCinfra induct – annual maintenance costs of in-motion

inductive charging [EUR], MCother- other annual costs (for example insurance, taxes) [EUR],

iinfra – market interest rate of infrastructure [-], minfra life – time with maintenance costs of

infrastructure, Infralife – infrastructure life [years].

6.11 External costs

TCO analysis includes external costs as well. The calculation of annual external costs is calcu-

lated using the following equation:
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ECexter = Busoper ann(Noisecost r + EPollcost r) + Busoper ann h HPollcost er (35)

where: ECexter – annual external costs of the bus fleet [EUR], Busoper ann – annual transport

work [vkm/year], Busoper ann h- annual transport work of bus fleet with oil heating [vkm/year],

Enercons – energy consumption [kWh/vkm], EPollcost er – cost rate of air pollutant and GHG

emission per vehicle-km [EUR/vkm], Noisecost r – cost rate of noise emission per 1 vehicle-km

[EUR/vkm], HPollcost er – cost rate of pollutant emission per 1 vkm (bus heating with oil)

[EUR/vkm].

Cost rate for air pollutant emission includes marginal air pollution costs and margin-al well-to-

tank costs.

In the next step annual external costs are discounted with a discount rate adequate for the

year in which such cash flows take place and then Present Value is the sum of these discounted

flows in time:

PV Eexter =

Buslife∑
mEX

(ECexter
1

(1 + ibus)
mex

) (36)

where: PV Eexter – present value of the external costs [EUR], ECexter – annual external

costs of the bus fleet [EUR], ibus – market interest rate for bus [-], Buslife – bus lifetime [years],

mEX – time with external costs.

6.12 Liquidation value

Liquidation value of a bus is discounted with a discount rate adequate for the year in which

such cash flows take place. The calculation of discounted proceeds of bus liquidation is carried

out by the equation:

DPLliq busi =

Buslife∑
mliq

ACbus nomi
plr

1

(1 + ibus)
mliq

(37)

where: Buslife – bus life [years], mliq – time with proceeds of bus liquidation, ACbus nom –

nominal acquisition costs of bus [EUR], plr – residual value rate of the bus [-], ibus – market

interest rate [-].
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The PV of proceeds of liquidation for e-bus fleet is calculated as sum of discounted cash

flows in a given period for n buses as follows:

PV Lliq bus =
n∑
i=1

DPLliq busi (38)

where: DPLliq bus – discounted proceeds of i-th bus liquidation [EUR], i – number of con-

secutive bus (i-th bus number), n – number of purchased buses.

6.13 The application of TCO model – case study based on realistic
operational scenario

The applicability of the developed socially-oriented dynamic model was verified using a case

study based on realistic operational scenario. Conducted case study was based on assumptions

that every 5 years starting from 2020 the fleet of new 10 electric buses is bought, and in total

40 buses. Each new batch of 10 buses had different funding structure:

• First batch: 15% self-financing and 85% subsidy,

• Second batch: 90% bank credit (decreasing installments) and 10% self-financing,

• Third batch: 30% self-financing and 70% in leasing,

• Fourth batch: 90% bank credit (annuities) and 10% subsidy.

Figure 4: Present value of the acquisition costs of electric buses in given years of investment.
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Table 11: Data used in case study of TCO calculation – bus fleet and infrastructure acquisition.
Item Value Unit
Nominal Acquisition Cost of Bus 554 000.00 EUR
Battery Capacity 240.00 kWh
Cost of Battery Unit Capacity 100.00 EUR/kWh
Bus cost (without battery) 500 000.00 EUR
Costs of double-layer capacitors 30 000.00 EUR
Acquisition costs of depot conductive plug-in charging
(total 40 points)

1 000 000.00 EUR

Acquisition costs of on bus-stop charging (total 40
points)

1 200 000.00 EUR

Annual maintenance costs of depot conductive plug-in
charging

400 000.00 EUR

Annual maintenance costs of on bus-stop charging 400 000.00 EUR
Other maintenance costs 40 000.00 EUR

The funding scenarios were diversified to examine the application of TCO model to different

cases. Starting from 2025 also new spare batteries are bought, one spare battery for one

bus. Assumed discount rate is 5% as recommended by the European Commission for the

programming period 2014-2020 (European Commission, 2015).

Figure 5: Present value of infrastructure in a given years of investment.

One depot conductive plug-in charger and on bus-stop charger per one bus is assumed.

Infrastructure acquisition in 2020 and 2020 is also a first year of infrastructure maintenance

and all costs related. The same infrastructure maintenance costs were assumed for 30 years
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(till 2050). The infrastructure acquisition is financed from own resources and subsidies (85%

of the nominal cost of buses). It is assumed that all funds will be spent in one year. The entire

subsidy is transferred in the same year as the buses were purchased. The main assumptions

regarding bus and infrastructure acquisition made for the case study are presented in Table 11.

Results of conducted simulation regarding PV of acquisition costs of electric bus fleet and

infrastructure are depicted in Fig. 4 and 5.

In the first year of investment (2020) the Present Value of Infrastructure (PVinfra) and

acquisition costs of electric buses (PVbus) is negative due to subsidy received which is higher

than own expenditures. The main assumptions and data regarding operation and external costs

are presented in Table 12.

Figure 6: Present value of the buses operating costs in a given years of investment.

According to assumptions made one third of annual transport work is done with bus heating

based on oil, which a source of external costs related to additional pollutant emission. This

solution is used very often and results from business practice of public transport operators.

Results of conducted simulation regarding PV of buses operating costs are depicted in Fig. 6.

External costs rates that were assumed are presented in Table 13.

External costs rate are a certain average resulting from marginal costs rates (well-to-tank)

for references cases in [12] European Union (European Commission, 2019). It was assumed

that the liquidation value of all buses is in 2050 (assumed residual value rate of the bus 5%).

The temporal course of annual TCO in the period from 2019 until 2050 is shown in Fig. 7.

The final TCO value is over 234.6 million EUR, which means for this case it is 0.73 EUR per
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Table 12: Operating and external costs.
Item 1st batch 2nd batch 3rd batch 4th batch
Years 2020-2024 2025-2029 2030-2034 2035-2050
Number of buses 10 20 30 40
Annual transport work 5 475 000 10 950 000 16 425 000 26 280 000
Staff service hours 21900 43800 65700 87600
Annual energy costs 1 182 600 2 365 200 3 547 800 5 676 480
Annual maintenance costs 109 500 219 000 328 500 438 000
Annual insurance costs 100 000 200 000 300 000 400 000
Annual costs of daily energy supply 1 095 000 2 190 000 3 285 000 5 256 000
Other costs 10 000 20 000 30 000 40 000
Annual Buses Operating Costs 2 497 100 4 994 200 7 491 300 11 810 480
Annual transport work of bus fleet with
oil heating

1 825 000 3 650 000 5 475 000 8 760 000

Annual external costs 2 410 825 4 821 650 7 232 475 11 571 960

Table 13: External costs rates.
Item
Cost rate of air pollutant and GHG emission per 1 vkm 0.32 EUR/vkm
Cost rate of noise emission per 1 vkm 0.067 EUR/vkm
Cost rate of pollutant emission per 1 vkm (bus heating
with oil)

0.16 EUR/vkm
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Figure 7: TCO annually in the period 2019-2050.

vehicle km based on the total mileage over the operational period (321.9 million of vehicle km

in 2020-2050).

The simulation highlighted the importance of buses operating costs and external costs in

the overall structure of TCO.
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