
Project PLATON
Planning Process and Tool for Step-by-Step Conversion of the Conventional or Mixed Bus

Fleet to a 100% Electric Bus Fleet

Document type: Description of experimental software for solving problem Opt by random-

ized heuristic RH.

Editor: Nikolai Guschinsky (UIIP-NASB)

Contributors: Nikolai Guschinsky, Mikhail Y. Kovalyov, Boris Rozin (all from UIIP-NASB)

Grant beneficiary of WP leader: the United Institute of Informatics Problems of the

National Academy of Sciences of Belarus

Funding organization of WP leader: National Academy of Sciences of Belarus, Indepen-

dence Ave. 66, 220072, Republic of Belarus, Minsk

Abstract

This document contains description of an experimental software for solving optimization prob-

lem OptSched. The problem and algorithm SY are described in Deliverables 4.3 and 4.4.

The problem OptSched is to distribute departures of buses of the same type assigned to the

same route as uniform as possible over the departures of all buses serving this route in the

decisive time period. The timetables which address this objective are called balanced. It is

assumed that buses of different types have different passenger capacities. Therefore, a balanced

timetable ensures a uniform allocation of bus capacities over time in the decisive time period

of the same route.



Contents

1 Computer implementation of algorithm SY 3

2 Formats of input file 4

3 Formats of the output file 4

2



1 Computer implementation of algorithm SY

Algorithm SY is implemented in C++ for Windows. It can be used as an executable file

schedule.exe or as a DLL-file scheddll.dll. These files can be used on a PC of a standard

configuration. Parameters of the command line for schedule.exe are:

• Full name of directory with input data.

• Full name of directory with configuration file sched.ini.

For example: d:/gn/soft/mobility/schedule/schedule.exe d:/gn/soft/mobility/mobility/schedule

d:/gn/soft/mobility/schedule, where d:/gn/soft/mobility/schedule is the directory with

schedule.exe, d:/gn/soft/mobility/schedule is the directory with the input data, and

d:/gn/soft/mobility/schedule is the directory with the configuration file sched.ini.

From Python schedule.exe can be executed in the following way:

import subprocess

argexe=’d:/gn/soft/mobility/schedule/schedule.exe’

arg1=’ d:/gn/soft/mobility/schedule’

arg2=’ d:/gn/soft/mobility/schedule’

args = argexe + arg1+ arg2

p=subprocess.Popen(args, shell = False)

p.wait()

ret=p.poll()

File scheddll.dll contains function SCHED, whose prototype is int SCHED(char * dir,char *

dir ini), where dir is the full name of the directory with the input data and dir ini is the full

name of the directory with the configuration file sched.ini. The return code of the function

SCHED is equal to 0 if the optimization was successful. In this case, all the output information

is placed into the file sched.out in the text format and in the file sched.json in the JSON format

in the directory dir. If the return code is not 0, then the corresponding error information is

placed into the file errors.out in the directory dir. An example of calling the function SCHED

from Python (32-bit) is given below.

import ctypes

schDll=ctypes.WinDLL(”d:/gn/soft/mobility/schedule/scheddll.dll”)

from ctypes import *

p1=create string buffer(b”d:/gn/soft/mobility/schedule”)

p2=create string buffer(b”d:/gn/soft/mobility/schedule”)

ret=mobDll.SCHED(p1,p2)

File sched.ini is used for setting parameter json:

3



• json – format of the input data, json ∈ {0, 1}, where

json = 0 if the input data are in the text format,

json = 1 if the input data are in the JSON format .

json = 1 is the default value.

Now GUI application (file schedulev.exe) is available. The application supports viewing and

printing of optimization results.

2 Formats of input file

Two formats of the input file are implemented. One of them is the JSON format, see

http://www.json.org/index.html for the description, and the other is the simple text format.

If the input parameter json = 1, then the file schedin.json is converted into the text file

schedin.txt. The data from the text file are imported and analyzed for errors. If there are er-

rors, then the information about them is placed into the file errors.out in the directory specified

by the parameter dir.

The file schedin.json defines values for names sn b (short names of the e-bus and conventional

vehicle types) and nv b (number of vehicles of type b) are to be defined. For example:

{
sn b: [MAZ103, E433],

nv b: [3, 8]

}
The file schedin.txt consists of two rows. The first row includes short names of the e-bus and

conventional vehicle types. The second row contains number of vehicles of each type. For

example:

MAZ103, E433

3, 8

3 Formats of the output file

Two formats of the output file are implemented. One of them is the JSON format, and the

second is the simple text format.

Object t is defined in the file sched.json. It consists of the short names of e-bus and conventional

vehicle types. For example:

{t: [

E433, MAZ103, E433, E433, E433, MAZ103, E433, E433, E433, MAZ103, E433]

}

4



The obtained solution, which is the sequence of vehicle types in the departure order, is placed

into the file sched.out. It consists of the sequence of short names of e-bus and conventional

vehicle types. For example:

E433 MAZ103 E433 E433 E433 MAZ103 E433 E433 E433 MAZ103 E433

5


